Make a submission.

JCST

Journal of Current Science and Technology

ISSN 2630-0656 (Online)

Concerted hydrogen bond and Hirshfeld surface analysis of Curcumin, Curcuma longa

  • Saifon A. Kohnhorst, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand, Corresponding author's e-mail: saifon.k@nrru.ac.th
  • Saowanit Saithong, Faculty of Science, Prince of Songkla University, Songkhla, Thailand

Abstract

Curcumin (C21H20O6) crystals were obtained from attempts to cocrystallize curcumin with amino acid in mixed ethanol/methanol solvent.  The curcumin structure, solved and refined by single crystal X-ray diffraction, exists in the enol form.  Analysis of the electron density demonstrates nonstatistical disorder of the positions for the enol proton forming a strong hydrogen bond stabilizing the enol form within the curcumin molecule.  Analysis of the intermolecular packing of the molecules shows that the crystal structure is assembled via two strong supramolecular O-H×××O interactions with distances of 2.4696(19) - 3.028(2) Å and a weak C-H···O hydrogen bond, distance of 4.046(3) Å.  The hydrogen bond graph set notation was assigned R62 (36) pattern.  Hirshfeld surface analysis indicates that the curcumin crystal structure is stabilized by the weak hydrogen bonds.  Crystal Data: C21H20O6 (Mr = 368.37 Daltons: monoclinic, space group P2/n (No. 13), a = 12.6956(3) Å, b = 7.2093(2) Å, c = 19.9362(5) Å, β = 95.276(2)°, V = 1816.96(8) Å3, Z = 4.

Keywords: crystal structure; curcuma longa; curcumin; curcuminoid; Hirshfeld surface analysis; hydrogen bond

PDF (1.13 MB)

DOI: 10.14456/jcst.2019.8

References

Arrieta, A. F., Haglund, K. A., & Mostad, A. (2000). Conjugation and hydrogen bonding in a curcumin analogue. Acta Crystallography Section C, 56(Pt 12), e594-e595. DOI: 10.1107/S0108270100015729

Bernstein, J., Davis, R. E., Shimoni, L., & Chang, N.-L. (1995). Patterns in hydrogen bonding: Functionality and graph set analysis. Angewandte Chemie International Edition England, 34(15), 1555-1573. DOI: 10.1002/anie.199515551

Chavda, H. V., Patel, C. N., & Anand, I. S. (2010). Biopharmaceutics Classification System. Systematic Reviews in Pharmacy, 1(1), 62-69. DOI: 10.4103/0975-8453.59514

Desiraju, G. R. (2005). C–H×××O and other weak hydrogen bonds. From crystal engineering to virtual screening. Chemistry Communication, 28(24), 2995-3001. DOI: 10.1039/B504372G

Desiraju, G. R. (2018). Crystal engineer, crystals and crystallography. IUCrJ, 5(Pt 6), 660-660. DOI: 10.1107/S2052252518015014

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J, Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. DOI: 10.1107/S0021889808042726

Etter, M., MacDonald, J. C., & Bernstein, J. (1990). Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallography section B, 46(Pt 2), 256-262. DOI: 10.1107/S0108768189012929

Farrugia, L. J. (2012). WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45(4), 849-854. DOI: 10.1107/S0021889812029111

Girija, C. R., Begum, N. S., Syed, A. A. & Thiruvenkatam, V. (2004). Hydrogen-bonding and C—H∙∙∙π interactions in 1,7-bis(4-hydroxy-3-methoxyphenyl)heptane-3,5-dione (tetrahydrocurcumin). Acta Crystallographica Section C, 60(Pt 8), o611-o613. DOI: 10.1107/S0108270104015549

Hubschle, C. B., Sheldrick, G. M., & Dittrich, B. (2011). ShelXle: a Qt graphical user interface for SHELXL. Journal of Applied Crystallography, 44, 1281-1284. DOI: 10.1107/S0021889811043202.

Hutchins, K. M. (2018). Functional materials based on molecules with hydrogen-bonding ability: applications to drug co-crystals and polymer complexes. Royal Society Open Science, 5(6), 180564. http://dx.doi.org/10.1098/rsos.180564

Ishigami,Y., Goto, M., Masuda, T., & Suzuki, S. (1999). The crystal structure and the fluorescent properties of curcumin. Journal of the Japan Society of Colour Materials, 72(2), 71-77.

Jeffrey, G. A., & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. New York, USA: Springer.

Kong, X., Brinkmann, A., Terskikh, V., Wasylishen, R. E., Bernard, G. M., Duan, Z.,  .  .  . Wu, G. (2014). Proton probability distribution in the O∙∙∙H∙∙∙O low-barrier hydrogen bond: A combined solid-state NMR and quantum chemical computational study of dibenzoylmethane and curcumin. Journal of Physical Chemistry B, 120(45), 11692-11704. DOI: 10.1021/acs.jpcb.6b08091

Matlinska, M. A., Wasylishen, R. E., Bernard, G. M., Terskikh, V. V., Brinkmann, A., & Michaelis, V. K. (2018). Capturing elusive polymorphs of curcumin: A structural characterization and computational study. Crystal Growth and Design, 18(9), 5556-5563. DOI: 10.1021/acs.cgd.8b00859

Mostad, A. (1994). Structure studies of curcuminoids. VIII. Crystal and molecular structure of 4-benyl-1,7-diphenyl-1,6-heptadiene-3,5-dione. Acta Chemica Scandinavica, 48, 144-148. DOI: 10.3891/acta.chem.scand.48-0144

Nangia, A. K., & Desiraju, G. R. (2018). Crystal Engineering. An Outlook for the Future. Angewandte Chemie International Edition, 58(13), 4100-4107. DOI: 10.1002/anie.201811313

Parimita, S. P., Ramshankar, Y. V., Suresh, S., & Guru Row, T. N. (2007). Redetermination of curcumin: (1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one. Acta Crystallographica Section C, 63(2), o860-o863. DOI: 10.1107/S160053680700222X

Ribas, M. M., Sakata, G. S. B., Santos, A. E., Magro, C. D., Aguiar, G.-P S., Lanza, M., & Oliveira, J. V. (2019). Curcumin cocrystals using supercritical fluid technology. The Journal of supercritical fluids, 152, 104564. DOI: 10.1016/j.supflu.2019.104564

Sanphui, P., Goud, N. R., Khandavilli, R. U. B., Bhanoth, S., & Nangia, A. (2011). New polymorphs of curcumin. Chemistry Communication, 47, 5013-5015. DOI: 10.1039/C1CC10204D

Sanphui, P., Goud, N. R., Khandavilli, R. U. B., & Nangia, A. (2011). Fast Dissolving Curcumin Cocrystals. Crystal Growth and Design, 11(9), 4135-4145. DOI: 10.1021/cg200704s

Sarma, J. A. R. P., & Desiraju, G. R. (1987). C-H×××O interactions and the adoption of 4 Å short-axis crystal structures by oxygenated aromatic compounds. Journal of Chemical Society Perkin Transaction 2, 1195-1202. DOI: 10.1039/P29870001195

Sathisaran, I., & Dalvi, S. V. (2017). Crystal engineering of curcumin with salicylic acid and hydroxyquinol as coformers. Crystal Growth and Design, 17(7), 3974-3988. https://doi.org/10.1021/acs.cgd.7b00599

Sheldrick, G. M. (2015a). SHELXT–Integrated space-group and crystal structure determination. Acta Crystallographica Section A, 71, 3-8. DOI: 10.1107/S2053273314026370

Sheldrick, G. M. (2015b). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71, 3-8. DOI: 10.1107/S2053229614024218

Skieneh, J. M., Sathisaran, I., Dalvi, S. V., & Rohani, S. (2017). Co-amorphous form of curcumin-folic acid dehydrate with increased dissolution rate. Crystal Growth and Design, 17, 6273-6280. DOI: 10.1021/acs.cgd.7b00947

Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. Crystal Engineering Communication, 11, 19-32. DOI: 10.1039/B818330A

Tonnessen, H. H., Karlsen, J., & Mostad, A. (1982). Structural studies of curcuminoids. I. The crystal structure of curcumin. Acta Chemica Scaninavica B, 36b, 475-479. DOI: 10.3891/acta.chem.scand.36b-0475

Approved By TCI (2020 - 2024)

Indexed in

Search