Make a submission.

JCST

Journal of Current Science and Technology

ISSN 2630-0656 (Online)

Regeneration of Co3O4–CeO2 catalyst used for odor elimination in an offset-printing factory

  • Kenichiro Inoue, Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
  • Shoichi Somekawa, Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan, Corresponding author; Email: somekawa.shouichi@iri-tokyo.jp
  • Tsutomu Shinoda, Sankyo Kousan Co., Ltd., 12-3, Kawasaki-city, Kanagawa, Japan
  • Hiroyuki Fujiwara, Sankyo Kousan Co., Ltd., 12-3, Kawasaki-city, Kanagawa, Japan
  • Yoshimasa Kawami, Sankyo Kousan Co., Ltd., 12-3, Kawasaki-city, Kanagawa, Japan

Abstract

          Deactivated ball-type Co3O4 -CeO2 catalyst used for odor elimination in an offset printing factory for a year was regenerated by soaking in water. The reaction yield of ethyl acetate to carbon dioxide increased, on regeneration, to 98% from 82% (used catalyst) at 350 oC (new catalyst: almost 100%). Sulfur was found in the water (eluate) after soaking the deactivated catalyst; and it is suggested that sulfur, which generally works as a catalyst poison, is dissolved in the water, resulting in recovery of catalyst activity. In the case of ball-type Pt/Al2O3 catalyst, little catalyst deactivation was observed after a year of usage at 350 oC; and it is considered that, in this case, the blocking of active sites is suppressed, since the sulfur adsorbed on platinum is easily burned and converted into gas.

Keywords: Co3O4-CeO2 catalyst; offset printing factory; Pt/Al2O3 catalyst; odor elimination; recovery of catalyst activity; sulfur

PDF (230.22 KB)

DOI: 10.14456/jcst.2018.6

References

Assal, Z. E., Ojala, S., Pitkäaho, S., Pirault-Roy, L., Darif, B., Comparot, J.-D.,  .  .  .  Brahmi, R. (2017). Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts. Chemical Engineering Journal, 313, 1010-1022. DOI: 10.1016/j.cej.2016.10.139

Browning, E. (1965). Toxicity and metabolism of industrial solvents. New York, USA: Elsevier Publishing Company.

Darif, B., Ojala, S., Pirault-Roy, L., Bensitel, M., Brahmi, R., & Keiski, R. L. (2016). Study on the catalytic oxidation of DMDS over Pt-Cu catalysts supported on Al2O3, AlSi20 and SiO2. Applied Catalysis. B: Environmental, 181, 24-33.

Kajama, M. N., Shehu, H., Okon, E., Orakwe, I., & Gobina, E. (2016). VOC oxidation in excess of oxygen using flow-through catalytic membrane reactor. International Journal of Hydrogen Energy, 41(37), 16529-16534.

Leclercq, J., Giraud, F., Bianchi, D., Fiaty, K., & Gaillard F. (2014). Novel inductively-heated catalytic system for fast VOCs abatement, application to IPA in air. Applied Catalysis B: Environmental, 146, 131-137. DOI: 10.1016/j.apcatb.2013.03.049

Lund, H. F. (1971). Industrial Pollution Control Handbook. New York, USA: Mcgraw-hill Book Company.

Somekawa, S., & Hagiwara, T. (2015). The effect of Si poisons on Co3O4-CeO2 catalyst: comparison with a Pt/Al2O3 catalyst. Rangsit Journal of Arts and Sciences, 5, 43-48. DOI: 10.14456/rjas.2015.6

Somekawa, S., Hagiwara, T., Fujii, K., Kojima, M., Shinoda, T., Takanabe, K., & Domen, K. (2011). Mineralization of volatile organic compounds (VOCs) over the catalyst CuO-Co3O4-CeO2 and its applications in industrial odor control. Applied Catalysis A: General, 409-410, 209-214. DOI: 10.1016/j.apcata.2011.10.004

Somekawa, S., Yuliati, L., Ishikawa, A., Takanabe, K., & Domen, K. (2010). Simple, low-cost preoaration of high surface area Co3O4-CeO2 catalyst for total decomposition of toluene. Chemistry Letters, 39(1), 26-27. DOI: 10.1246/cl.2010.26

Sun, Y. -M., Sloan, D., Alberas, D. J., Kovar, M., Sun, Z. -J., & White J. M. (1994). SO2 adsorption on Pt(111): HREELS, XPS and UPS study. Surface Science, 319(1-2), 34-44. https://doi.org/10.1016/0039-6028(94)90567-3

Approved By TCI (2020 - 2024)

Indexed in

Search