JCST

Journal of Current Science and Technology

ISSN 2630-0656 (Online)

A new three-dimensional zinc(II)-barium(II) coordination polymer based on trimesic acid and imidazole ligands: synthesis, structure and properties

  • Natthakorn Phadungsak, Faculty of Science and Technology, Thammasat University, Patum Thani, Thailand
  • Supakorn Boonyuen, Faculty of Science and Technology, Thammasat University, Patum Thani, Thailand
  • Darunee Sertphon, Faculty of Science, Rangsit University, Patum Thani, Thailand
  • Winya Dungkeaw, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand
  • Filip Kielar, Faculty of Science, Naresuan University, Phitsanulok, Thailand
  • Kittipong Chainok, Faculty of Science and Technology, Thammasat University, Patum Thani, Thailand, Corresponding author; Email: kc@tu.ac.th

Abstract

A new zinc(II)-barium(II) bimetallic coordination polymer, [BaZn2(TMA)2(Im)2] (1), has been synthesized by hydrothermal reaction of zinc(II) acetate, barium(II) acetate, trimesic acid (H3TMA), and imidazole (Im), and was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, thermogravimetric analysis, and infrared and photoluminescence spectroscopy. Single crystal X-ray analysis reveals that compound 1 crystallizes in the centrosymmetric triclinic system with space group P-1 and features a dense three-dimensional framework. Compound 1 exhibits intense blue fluorescent emission in the solid state at room temperature and the framework shows remarkable thermal stability up to 460°C.

Keywords: coordination polymers; crystal structure; photoluminescence; cobalt(II); barium(II); zinc(II)

PDF (1 MB)

DOI: 10.14456/jcst.2018.1

References

Batten, S. R., & Murray, K. S. (2003). Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide. Coordination Chemistry Reviews, 246, 103-130. DOI: https://doi.org/10.1016/S0010-8545(03)00119-X

Bruker. (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chang, Z., Zhang, A.-S., Hu, T.-L., & Bu, X.-H. (2009). ZnII coordination polymers based on 2,3,6,7-anthracenetetracarboxylic acid: synthesis, structures, and luminescence properties. Crystal Growth & Design, 9(11), 4840-4846. DOI: 10.1021/cg900659r

Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G., & Williams, I. D. (1999). A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 283, 1148-1150. DOI: 10.1126/science.283.5405.1148

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339-341. DOI: 10.1107/S0021889808042726

Du, P., Yang, Y., Yang, J., Liu, Y.-Y., Kan, W.-Q., & Ma, J.-F. (2013). A series of MOFs

based on a tricarboxylic acid and various N-donor ligands: syntheses, structures, and properties. CrystEngCommunity, 15, 6986-7002. DOI: 10.1039/C3CE40828K

Foo, M. L., Horike, S., Duan, J., Chen, W., & Kitagawa, S. (2013). Tuning the dimensionality of inorganic connectivity in barium coordination polymers via biphenyl carboxylic acid ligands. Crystal Growth & Design, 13(7), 2965-2972. DOI: 10.1021/cg4003803

Getman, R. B., Bae, Y.-S., Wilmer, C. E., & Snurr, R. Q. (2012). Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chemical Reviews, 112(2), 703-723. DOI: 10.1021/cr200217c

Heine, J., & Müller-Buschbaum, K. (2013) Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chemical Society Reviews, 42, 9232-9242. DOI: 10.1039/C3CS60232J

Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Duyne, R. P. V. & Hupp, J. T. (2012). Metal-organic framework materials as chemical sensors. Chemical Reviews, 112(2), 1105-1125. DOI: 10.1021/cr200324t

Janiak, C. (2000). A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions, 21, 3885-3896. http://dx.doi.org/10.1039/B003010O

Li, H., Eddaoudi, M., O'Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276-279. DOI: 10.1038/46248

Lin, X.-M., Fang, H.-C., Zhou, Z.-Y., Chen, L., Zhao, J.-W., Zhu, S.-Z., & Cai, Y.-P. (2009). Temperature- and solvent-controlled dimensionality in a zinc 6-(1H-benzoimidazol-2-yl)pyridinecarboxylate system. CrystEngCommunity, 11, 847-854. DOI: 10.1039/B819800D

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., & Wood, P. A. (2008). Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41, 466-470. DOI: https://doi.org/10.1107/S0021889807067908

Sheldrick, G. M. (2015a). SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations and Advances, 71(part 1), 3-8. DOI: 10.1107/S2053273314026370

Sheldrick, G. M. (2015b). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71, 3-8. DOI: 10.1107/S2053229614024218

Wang, Y., & Pan, S. (2016). Recent development of metal borate halides: Crystal chemistry and application in second-order NLO materials. Coordination Chemistry Reviews, 323, 15-35. DOI: https://doi.org/10.1016/j.ccr.2015.12.008

Xie, W., He, W.-W., Du, D.-Y., Li, S.-L., Qin, J.-S., Su, Z.-M.,  .  .  .  Lan, Y.-Q. (2016). A stable Alq3@MOF composite for white-light emission. Chemical Communications, 52, 3288-3291. DOI: 10.1039/C5CC08703A

Zhu, L., Lui, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal-organic frameworks for heterogeneous basic catalysis. Chemicals Reviews, 117(12), 8129-8176. DOI: 10.1021/acs.chemrev.7b00091

Approved By TCI (2020 - 2024)

Indexed in

Search