JCST

Journal of Current Science and Technology

ISSN 2630-0656 (Online)

Effect of drying conditions on the phytochemicals and qualities of herbal tea made from the silk and cobs of red sweet corn

  • Phornpan Ji-u, Program of Food Science and Technology, Faculty of Agricultural Technology and Industrial Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan 60000, Thailand, Corresponding author; E-mail: tarit.a@rsu.ac.th
  • Tarit Apisittiwong, Faculty of Food Technology, College of Agricultural Innovation and Food Technology, Rangsit University, Pathumthani 12000, Thailand

Abstract

This research investigated suitable hot air drying conditions to prepare corn silk and cob herbal tea from the silk and cobs of the red sweet corn “Siam Ruby Queen”. The optimum process conditions and quality of the tea were determined. The drying was performed at four different temperatures: sun drying (37±3), 60, 70, and 80 °C. The optimum drying conditions were 70 °C, 1 h and 70 °C, 5 h for the corn silk and the corn cob, respectively. The herbal tea contained 43.10±2.26 mg/100 g total anthocyanin content, 14.44±0.78 mg/100 g of cyanidin, 28.66±0.74 mg/100 g of peonidin, and 990.11±39.49 mg GAE/100 g total phenolic content. The color values of the infusions, L*, a*, and b*, were 25.53±0.04, 31.50±0.08, and 30.67±0.33, respectively. The moisture content and water activity of the product were 5.7725±0.7407% and 0.3152±0.0760. There was no contamination by yeasts or molds, including Escherichia coli, in the product. Therefore, the corn silk and cob herbal tea developed in this study met the Thai community products standard (TCPS 478/2562).

Keywords: anthocyanins content; corn silk and cobs; hot air dryer; infusion tea; sun drying; total phenolic content

PDF (493.01 KB)

DOI: 10.14456/jcst.2022.21

References

AOAC. (2000). Official Method of Analysis. 17th edition. The Association of Official Analytical Chemists. Washington DC, USA.

Baysal, T., Icier, F., Ersus S. & Yildiz, H. (2003). Effects of microwave and infrared drying on the quality of carrot and garlic. European Food Research and Technology, 218(1), 68-73. DOI: https://doi.org/10.1007/s00217-003-0719-3

Bendokas, V., Skemiene, K., Trumbeckaite, S., Stanys, V., Passamonti, S., Borutaite, V. & Liobikas, J. (2020). Anthocyanins: From plant pigments to health benefits at mitochondrial level. Critical Review in Food Science and Nutrition, 60(19), 3352-3365. DOI: https://doi.org/10.1080/10408398.2019.1687421

Calín-Sánchez, Á., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., & Figiel, A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods9(9), 1261. DOI: https://doi.org/10.3390/foods9091261

Chaiittianan, R., Sutthanut, K., & Rattanathongkom, A. (2017). Purple corn silk: A potential anti-obesity agent with inhibition on adipogenesis and induction on lipolysis and apoptosis in adipocytes. Journal of ethnopharmacology201, 9-16. DOI: https://doi.org/10.1016/j.jep.2017.02.044

Chandrasekara, A. & Shahidi, F. (2018). Herbal beverages: Bioactive compounds and their role in disease risk reduction – A review. Journal of Traditional and Complementary Medicine, 8(4), 451-458. DOI: https://doi.org/10.1016/j.jtcme.2017.08.006

Charmongkolpradit, S., Somboon, T., Phatchana, R., Sang-aron, W. & Thanwanichkul, B. (2021). Influence of drying temperature on anyhocyanin and moisture contents in purple waxy corn kernel using a tunnel dryer. Case Studies in Thermal Engineering, 25, 100886. DOI: https://doi.org/10.1016/j.csite.2021.100886

Colombo, R., Ferron, L. & Papetti, A. (2021). Colored corn: An up-date on metabolites extraction, health implication, and potential use. Molecules, 26(1), 1-42. DOI: https://doi.org/10.3390/molecules26010199

Cook, M. D. & Willems, M. E. T. (2019). Dietary anthocyanins: A review of the exercise performance effects and related physiological responses. International Journal of Sport Nutrition and Exercise Metabolism, 29(3), 322-330. DOI: https://doi.org/10.1123/ijsnem.2018-0088

Demiray, E. & Tulek, Y. (2016). The effect of pretreatments on air drying characteristics of persimmons. Heat Mass Transfer, 53(1), 99-106. DOI: https://doi.org/10.1007/s00231-016-1797-2

Ferron, L., Colombo, R., Mannucci, B. & Papetti, A. (2020). A new Italian purple corn variety (Moradyn) byproduct extract: Antiglycative and hypoglycemic in vitro activities and preliminary bioaccessibility studies. Molecules, 25(8), 1958. DOI: 10.3390molecules25081958

Gamage, D. G. N. D., Abeysinghe, D. C., Wijesekara, R. G. S., Prathapasinghe, G. A., Dharmadasa, R. M., & Someya, T. (2021). Assessment of Phytochemical Contents and Total Antioxidant Capacity of Five Medicinal Plants with Cosmetic Potential under Three Different Drying Methods. World Journal of Agricultural Research9(1), 24-28. DOI: 10.1269/wjar-9-1-4

Gąsecka, M., Siwulski, M., Magdziak, Z., Budzyńska, S., Stuper-Szablewska, K., Niedzielski, P., & Mleczek, M. (2020). The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers. Journal of food science and technology57(2), 513-525. DOI: https://doi.org/10.1007/S13197-019-04081-1

Gonçalves, A. C., Nunes, A. R., Falcão, A., Alves, G., & Silva, L. R. (2021). Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals14(7), 690. DOI: https://doi.org/10.3390/ph14070690

Harakotr, B., Suriharn, B. Tangwongchai, R., Scott, M. P. & Lertrat, K. (2014). Anthocyanins andantioxidant activity in colored waxy corn at different maturation stages. Journal of Functional Foods, 9, 109-118. DOI: https://doi.org/10.1016/j.jff.2014.04.012

Kapcum, C., Uriyapongson, S. & Uriyapongson, J. (2021). Phenolics, anthocyanins and antioxidant activities in waste products from different parts of purple waxy corn (Zea mays L.). Songklanakarin J. Sci. Technol., 43, 398–405. DOI: 10.14456/sjst-psu.2021.52

Khoo, H. E., Azlan, A., Tang, S. T. & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research, 61(1), 1-21. DOI: https://doi.org/10.1016/j.csite.2021.100886

Lee, S. H., Park, J. G., Lee, D. Y., Kandpal, L. M., Cho, B. K., Hong, S. J. & Jun, S. (2016). Drying characteristics of agricultural products under different drying methods: A review. Journal of Biosystems Engineering, 41(4), 389-395. DOI: https://doi.org/10.5307/JBE.2016.41.4389.

Li, C. C., Lee, Y. C., Lo, H. Y., Huang, Y. W., Hsiang, C. Y. & Ho, T. Y. (2019). Antihypertensive effect of corn silk extract and its novel bioactive constituent in spontaneously hypertensive rats: The involvement of angiotensin-converting enzyme inhibition. Molecules, 24(10), 1-14. DOI: 10.3390/molecules24101886

Li, C. Y., Kim, H. W., Won, S. R., Min, H. K., Park, K. J., Park, J. Y., ... & Rhee, H. I. (2008). Corn husk as a potential source of anthocyanins. Journal of agricultural and food chemistry56(23), 11413-11416. DOI: https://doi.org/10.1021/jf802201c

Lu, J., Zhao, H., Chen, J., Fan, W., Dong, J., Kong, W., ... & Cai, G. (2007). Evolution of phenolic compounds and antioxidant activity during malting. Journal of Agricultural and Food Chemistry55(26), 10994-11001. DOI: https://doi.org/10.1021/jf0722710

Mbondo, N. N., Owino, W. O., Ambuko, J. & Sila, D. N. (2018). Effect of drying methods on the retention of bioactive compounds in African eggplant. Food Science and Nutrition, 6(4), 814-823. DOI: 10.1002/fsn3.623

Salinas Moreno, Y., Sánchez, G. S., Hernández, D. R., & Lobato, N. R. (2005). Characterization of anthocyanin extracts from maize kernels. Journal of Chromatographic Science43(9), 483-487. DOI: https://doi.org/10.1093/chromsci/43.9.483

Nguyen, Q. V., & Chuyen, H. V. (2020). Processing of herbal tea from Roselle (Hibiscus sabdariffa L.): Effect of drying temperature and brewing conditions on total soluble solid, phenolic content, antioxidant capacity and sensory quality. Beverages, 6(1), 1-11, DOI: https://doi.org/10.3390/beverages6010002

Pashazadeh, H., Zannou, O., & Koca, I. (2020). Modeling of drying and rehydration kinetics of Rosa pimpinellifolia fruits: Toward formulation and optimization of a new tea with high antioxidant properties. Journal of Food Processing Engineering, 43(10), 1-17. DOI: https://doi.org/ 10.1111/jfpe.13486

Patras, A., Brunton, N. P., O'Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology21(1), 3-11. DOI: https://doi.org/10.1016/j.tifs.2009.07.004

Pedreschi, R., & Cisneros-Zevallos, L. (2007). Phenolic profiles of Andean purple corn (Zea mays L.). Food Chemistry100(3), 956-963. DOI: https://doi.org/10.1016/j.foodchem.2005.11.004

Peniche-Pavia, H. A. & Tiessen, A. (2020). Anthocyanin profiling of maize grains using DIESI-MSQD reveals that cyanidin-based derivatives predominate in purple corn, whereas pelargonidin-based molecules occur in red-pink varieties from Mexico. Journal of Agricultural and Food Chemistry, 68(21), 5980-5994. DOI: https://doi.org/10.1021/acs.jacf.9b06336

Rabeta, M. S. & Vithyia, M. (2013). Effect of different drying methods on the antioxidant properties of Vitexnegundo Linn. tea. International Food Research Journal, 20(6), 3171-3176.

Rahman, N. A., & Rosli, W. I. W. (2014). Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn. Journal of King Saud University-Science26(2), 119-127. DOI: http://dx.doi.org/10.1016/j.jksus.2013.11.002

Ravikumar, C. (2014). Review on herbal tea. Journal of Pharmaceutical Sciences and Research, 6(5), 236-238.

Senphan, T. (2019). Comparative studies on chemical composition and antioxidant activity of corn silk from two varieties of sweet corn and purple waxy corn as influenced by drying methods:-. Food and Applied Bioscience Journal7(3), 64-80.

Shalihah, I. M., Pamela, V. Y. & Kusumasari, S. (2020). Corn silk tea extract as antidiabetic: A review. Food Science Technology Journal, 2(2), 75-79. DOI: 10.33512/fsj.v2i2.9647

Shi, J., Pan, Z., McHugh, T. H., Wood, D., Hirschberg, E., & Olson, D. (2008). Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT-Food Science and Technology41(10), 1962-1972.

Simla, S., Boontang, S. & Harakotr, B. (2016). Anthocyanin content, total phenolic content, and Antiradical capacity in different ear components of purple waxy corn at two maturation stages. Australian Journal of Crop Science, 10(5), 675-682. DOI: 10.21475/ajcs.2016.10.05.p7389

Singh, A., Raghuvanshi, R. S., & Bhatnagar, A. (2021). Herbal tea formulation using different flavoured herbs with dried corn silk powder and its sensory and phytochemical analysis. Systems Microbiology and Biomanufacturing1(3), 336-343.. DOI: https://doi.org/10.1007/s43393-021-00029-9

Wattanathorn, J., Thukham-mee, W., Muchimapura, S. & Kirisattayakul, W. (2020). An anthocyanins-rich corn derived herbal tea improves memory, oxidative stress status and functions of cholinergic and monoaminergetic systems in hippocampus. Journal of the Medical Association of Thailand, 103(1), 113-119.

Yang, Z. & Zhai, W. (2010). Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innovative Food Science and Emerging Technology, 11(1), 169-176. DOI: https://doi.org/10.1016/j.ifset.2009.08.012

Zhang, Z., Kou, X., Fugal, K. & McLaughlin, J. (2004). Comparison of HPLC methods for determination of anthocyanins and anthocyanidins in bilberry extracts. Journal of Agricultural and Food Chemistry, 52(4), 688-691. DOI: https://doi.org/10.1021/jf034596w

Žilić, S., Janković, M., Basić, Z., Vančetović, J. & Maksimović, V. (2016). Antioxidant activity, phenolic profile, chlorophyll and mineral matter content of corn silk (Zea mays L.): Comparison with medicinal herbs.  Journal of Cereal Science, 69, 363-370. DOI: http://dx.doi.org/10.1016/j.jcs.2016.05.003

Approved By TCI (2020 - 2024)

Indexed in

Search