Make a submission.

JCST

Journal of Current Science and Technology

ISSN 2630-0656 (Online)

Adaptive Grey Wolf based on Firefly algorithm technique for optimal reactive power dispatch in unbalanced load conditions

  • S. K. Mahammad Shareef, Department of EEE, Narasaraopeta Engineering College, Kotappakonda Road, Narasaraopet, Guntur, Andhra Pradesh, India, Corresponding author; E-mail: skmseee@gmail.com
  • R. Srinivasa Rao, Department of EEE, University College of Engineering Kakinada, JNTUK, Kakinada, Andhra Pradesh, India

Abstract

ORPD (Optimal Reactive Power Dispatching) is a subset of optimal power flow.  The reduction of an objective function expressing total various other optimization methods of ORPD problems have been utilized, but these methods are not able to select optimal active power losses in power systems was traditionally thought of as ORPD.  In literature, control variables of power systems, and in order to overcome the drawbacks, the proposed method is developed.  For solving the ORPD problem in power systems, this paper suggested an adaptive Grey Wolf based Firefly Algorithm (GWFA).  The adaptive technique is carried out by combining the Grey Wolf Optimization (GWO) and the Firefly Algorithm (FA).  The FA is utilized to achieve the updating process of grey wolves in the GWO for enhancing the performance of GWO.  The suggested methodology is used to tap change transformers by tap positions, compute optimal control variables of generator voltages, and optimize two different objective functions such as voltage deviation minimization and power loss minimization using shunt capacitors.  The proposed adaptive technique is implemented in the standard IEEE 14, IEEE 30 and IEEE 39 bus systems in order to overcome the issue of ORPD within power systems, and it is compared with the already existing methods of ABC, Bat, FA and GWO.  Ultimately, the proposed adaptive technique is capable of producing optimal control variables for solving ORPD problems in power systems.

Keywords: adaptive technique; control variables; generator; power loss; ORPD problem; voltage deviation

PDF (1.5 MB)

DOI: 10.14456/jcst.2022.3

References

Abd-Elazim, S. M., & Ali, E. S. (2018). Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm. Neural Computing and Applications30(2), 607-616.

Barakat, A. F., El-Sehiemy, R. A., Elsayd, M. I., & Osman, E. (2019, February). An enhanced Jaya optimization algorithm (EJOA) for solving multi-objective ORPD problem. In 2019 International Conference on Innovative Trends in Computer Engineering (ITCE) (pp. 479-484). IEEE.

ben oualid Medani, K., Sayah, S., & Bekrar, A. (2018). Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system. Electric Power Systems Research163, 696-705.

Bingane, C., Anjos, M. F., & Le Digabel, S. (2019). Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem. IEEE transactions on power systems34(6), 4684-4693.

Duman, S., Sönmez, Y. U. S. U. F., Güvenç, U., & Yörükeren, N. (2012). Optimal reactive power dispatch using a gravitational search algorithm. IET generation, transmission & distribution6(6), 563-576.

Dutta, S., Mukhopadhyay, P., Roy, P. K., & Nandi, D. (2016). Unified power flow controller based reactive power dispatch using oppositional krill herd algorithm. International Journal of Electrical Power & Energy Systems80, 10-25.

Dutta, S., Paul, S., & Roy, P. K. (2018). Optimal allocation of SVC and TCSC using quasi-oppositional chemical reaction optimization for solving multi-objective ORPD problem. Journal of Electrical Systems and Information Technology5(1), 83-98.

Ghasemi, M., Taghizadeh, M., Ghavidel, S., Aghaei, J., & Abbasian, A. (2015). Solving optimal reactive power dispatch problem using a novel teaching–learning-based optimization algorithm. Engineering Applications of Artificial Intelligence39, 100-108. DOI: 10.1016/j.engappai.2014.12.001

Latif, A., Ahmad, I., Palensky, P., & Gawlik, W. (2016, November). Multi-objective reactive power dispatch in distribution networks using modified bat algorithm. In 2016 IEEE Green Energy and Systems Conference (IGSEC) (pp. 1-7). IEEE.

Mahzouni-Sani, M., Hamidi, A., Nazarpour, D., & Golshannavaz, S. (2019). Multi-objective linearised optimal reactive power dispatch of wind-integrated transmission networks. IET Generation, Transmission & Distribution13(13), 2686-2696.

Mehdinejad, M., Mohammadi-Ivatloo, B., Dadashzadeh-Bonab, R., & Zare, K. (2016). Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms. International Journal of Electrical Power & Energy Systems83, 104-116.

Mei, R. N. S., Sulaiman, M. H., Mustaffa, Z., & Daniyal, H. (2017). Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique. Applied Soft Computing59, 210-222.

Mohseni-Bonab, S. M., Rabiee, A., & Mohammadi-Ivatloo, B. (2016). Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach. Renewable Energy85, 598-609.

Mohseni-Bonab, S. M., Rabiee, A., Mohammadi-Ivatloo, B., Jalilzadeh, S., & Nojavan, S. (2016). A two-point estimate method for uncertainty modeling in multi-objective optimal reactive power dispatch problem. International Journal of Electrical Power & Energy Systems75, 194-204.

Mouassa, S., Bouktir, T., & Salhi, A. (2017). Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Engineering science and technology, an international journal20(3), 885-895.

Naderi, E., Narimani, H., Fathi, M., & Narimani, M. R. (2017). A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch. Applied Soft Computing53, 441-456.

Nuaekaew, K., Artrit, P., Pholdee, N., & Bureerat, S. (2017). Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer. Expert Systems with Applications87, 79-89.

Nuaekaew, K., Artrit, P., Pholdee, N., & Bureerat, S. (2017). Optimal reactive power dispatch problem using a two-archive multi-objective grey wolf optimizer. Expert Systems with Applications87, 79-89.

Pai, M. A. (1989). Power System Stability in Single Machine System. In Energy Function Analysis for Power System Stability (pp. 1-19). Springer, Boston, MA.

Raha, S. B., & Chakraborty, N. (2012). Tuned reactive power dispatch through modified differential evolution technique. Frontiers in Energy6(2), 138-147.

Rajan, A., & Malakar, T. (2015). Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm. International Journal of Electrical Power & Energy Systems66, 9-24.

Rajan, A., & Malakar, T. (2016). Exchange market algorithm based optimum reactive power dispatch. Applied Soft Computing43, 320-336.

Reddy, S. S., & Bijwe, P. R. (2017). Multi-objective optimal power flow using efficient evolutionary algorithm. International Journal of Emerging Electric Power Systems18(2).

Reddy, S. S., & Bijwe, P. R. (2019). Differential evolution-based efficient multi-objective optimal power flow. Neural Computing and Applications31(1), 509-522.

Reddy, S. S., & Panigrahi, B. K. (2017). Application of swarm intelligent techniques with mixed variables to solve optimal power flow problems. International Journal of Bio-Inspired Computation10(4), 283-292.

Reddy, S. S., Abhyankar, A. R., & Bijwe, P. R. (2011). Reactive power price clearing using multi-objective optimization. Energy36(5), 3579-3589.

Reddy, S.S., 2017. Optimal Reactive Power Scheduling Using Cuckoo Search Algorithm. International Journal of Electrical & Computer Engineering (2088-8708), 7(5).

Saddique, M. S., Bhatti, A. R., Haroon, S. S., Sattar, M. K., Amin, S., Sajjad, I. A., ... & Rasheed, N. (2020). Solution to optimal reactive power dispatch in transmission system using meta-heuristic techniques―Status and technological review. Electric power systems research178, 106031.

Saxena, A., Soni, B. P., Kumar, R., & Gupta, V. (2018). Intelligent Grey Wolf Optimizer–Development and application for strategic bidding in uniform price spot energy market. Applied Soft Computing69, 1-13.

Sayah, S. (2018). Modified differential evolution approach for practical optimal reactive power dispatch of hybrid AC–DC power systems. Applied Soft Computing73, 591-606.

Sayah, S. (2018). Modified differential evolution approach for practical optimal reactive power dispatch of hybrid AC–DC power systems. Applied Soft Computing73, 591-606.

Shaheen, M. A., Yousri, D., Fathy, A., Hasanien, H. M., Alkuhayli, A., & Muyeen, S. M. (2020). A novel application of improved marine predators algorithm and particle swarm optimization for solving the ORPD problem. Energies13(21), 5679.

Shaw, B., Mukherjee, V., & Ghoshal, S. P. (2014). Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm. International Journal of Electrical Power & Energy Systems55, 29-40.

Approved By TCI (2020 - 2024)

Indexed in

Search