Make a submission.


Journal of Current Science and Technology

ISSN 2630-0656 (Online)

COVID-19 pandemic and vitamin D deficiency: a different approach with an analysis of the findings and a complimentary proposal

  • Virna M. Martín Giménez, Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina.
  • Ivana Bergam, Croatia osiguranje, Pension Company for voluntary pension fund management, Vatroslava Jagića 33, 10000 Zagreb, Croatia.
  • Felipe Inserra, Universidad Maimónides, Buenos Aires, Argentina
  • Russel J. Reiter, Department of Cell Systems and Anatomy, UT Health San Antonio Long School of Medicine, San Antonio, TX, USA.
  • Walter Manucha, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina. & Instituto de Medicina y Biología Experimental de Cuyo (IMBEC, Corresponding author; E-mail:


Vitamin D is an essential immune-modulator with receptors widely distributed throughout the body, and its serum levels fluctuate significantly in individuals between winter and summer months.  This study examines the association between low vitamin D status and prevalence of COVID-19 cases around the world and proposes a relationship with the seasonal character of the human immune system strength rather than to the seasonal infectivity of viruses.  Also, this review suggests that the observed geographical disparities in COVID-19 cases are due to differences in vitamin D levels.  On the international scale, serum vitamin D levels are reportedly lowest in China, the Middle East, and South Europe; these populations also had the largest outbreaks of COVID-19 cases.  In addition to the geographical differences in vitamin D status, there are known risk groups (ethnic, age-related, pregnancies).  In contrast, some countries including Canada, Finland, and North Europe incorporate increased amounts of vitamin D through fortified foods, vitamin D supplements, and sunbathing.  These countries show the lowest morbidity and mortality rates by COVID-19 infection and demonstrate that lower ambient temperatures do not contribute to a higher number of COVID-19 cases.  COVID-19 has spread around the globe almost simultaneously in both warm and cold areas.  Given this information, vitamin D measurement should become an essential component of public health monitoring as a biomarker of immunity status.  Clinical trials should be conducted to confirm this hypothesis.  COVID-19 tests should be performed together with vitamin D status tests to verify this proposed relationship.

Keywords: COVID-19; geographical differences; seasonal immune system; vitamin D deficiency; vitamin D status

PDF (363.98 KB)

DOI: 10.14456/jcst.2021.16


Adams, J. S., & Hewison, M. (2012). Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Archives of Biochemistry and Biophysics, 523(1), 95-102. DOI:

Alshahrani, F., & Aljohani, N. (2013). Vitamin D: deficiency, sufficiency and toxicity. Nutrients, 5(9), 3605-3616. DOI:

Alvarez-Artime, A., Cernuda-Cernuda, R., Artime-Naveda, F., Cepas, V., Gonzalez-Menendez, P., Fernadez-Vega, S., Quiros-Gonzalez, I., Sainz, R. M., & Mayo, J. C. (2020). Melatonin-Induced Cytoskeleton Reorganization Leads to Inhibition of Melanoma Cancer Cell Proliferation. International Journal of Molecular Sciences, 21(2), 548. DOI:

Aranow, C. (2011). Vitamin D and the immune system. Journal of Investigative Medicine, 59(6), 881-886. DOI:

Arnljots, R., Snaebjörnsson Arnljots, E., Thorn, J., Elm, M., Moore, M., & Sundvall, P. D. (2019). Bacteriuria and vitamin D deficiency: a cross sectional study of 385 nursing home residents. BMC Geriatrics, 19(1), 381. DOI:

Barnard, K., & Colón-Emeric, C. (2010). Extraskeletal effects of vitamin D in older adults: cardiovascular disease, mortality, mood, and cognition. The American Journal of Geriatric Pharmacotherapy, 8(1), 4-33. DOI:

Bassil, D., Rahme, M., Hoteit, M., & Fuleihan, G. E.-H. (2013). Hypovitaminosis D in the Middle East and North Africa: Prevalence, risk factors and impact on outcomes. Dermatoendocrinology, 5(2), 274-298. DOI:

Beard, J. A., Bearden, A., & Striker, R. (2011). Vitamin D and the anti-viral state. Journal of Clinical Virology, 50(3), 194-200. DOI:

Bikle, D. D. (2009). Vitamin D and immune function: understanding common pathways. Current Osteoporosis Reports, 7(2), 58-63. DOI:

Cannell, J. J., Vieth, R., Umhau, J. C., Holick, M. F., Grant, W. B., Madronich, S., Garland, C. F., & Giovannucci, E. (2006). Epidemic influenza and vitamin D. Epidemiology and Infection, 134, 1129-1140. DOI:

Chakhtoura, M., Rahme, M., Chamoun, N., & Fuleihan, G. E.-H. (2018). Vitamin D in the Middle East and North Africa. Bone Reports, 8, 135-146. DOI:

Cinar, N., Harmanci, A., Yildiz, B. O., & Bayraktar, M. (2014). Vitamin D status and seasonal changes in plasma concentrations of 25-hydroxyvitamin D in office workers in Ankara, Turkey. European Journal of Internal Medicine, 25(2), 197-201. DOI:

D'Avolio, A., Avataneo, V., Manca, A., Cusato, J., De Nicolò, A., Lucchini, R., Keller, F., & Cantù, M. (2020). 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients, 12(5), 1359. DOI:

Dobson, R. (2007). Many young south Asian women in UK lack vitamin D, study finds. British Medical Journal, 334(7590), 389. DOI:

Ferder, M., Inserra, F., Manucha, W., & Ferder, L. (2013). The world pandemic of vitamin D deficiency could possibly be explained by cellular inflammatory response activity induced by the renin-angiotensin system. American Journal of Physiology Cell Physiology, 304(1), C1027-39. DOI:

Gavigan, P., & McCullers, J. A. (2019). Influenza: annual seasonal severity. Current Opinion in Pediatrics, 31(1), 112-118. DOI:

Giménez, V. M. M., Sanz, R. L., Marón, F. J. M., Ferder, L., & Manucha, W. (2020). Vitamin D-RAAS connection: An Integrative Standpoint into Cardiovascular and Neuroinflammatory Disorders. Current Protein and Peptide Sciences, 2020, 10.2174/1389203721666200606220719. DOI:

Grant, W. B. (2011). An estimate of the global reduction in mortality rates through doubling vitamin D levels. European Journal of Clinical Nutrition, 65(9), 1016-1026. DOI:

Grant, W. B., Bhattoa, H. P., & Boucher, B. J. (2017). Seasonal variations of U.S. mortality rates: Roles of solar ultraviolet-B doses, vitamin D, gene exp ression, and infections. The Jounal of Steroid Biochemistry and Molecular Biology, 173, 5-12. DOI:

Grant, W. B., & Giovannucci, E. (2009). The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918-1919 influenza pandemic in the United States. Dermatoendocrinology, 1(4), 215-9. DOI:

Grant, W. B., Schwalfenberg, G. K., Genuis, S. J., & Whiting, S. J. (2010). An estimate of the economic burden and premature deaths due to vitamin D deficiency in Canada. Molecular Nutrition and Food Research, 54(8), 1172-1181. DOI:

Kim; H. J., Jang, J. G., Hong, K. S., Park, J. K., & Choi, E. Y. (2015). Relationship between serum vitamin D concentrations and clinical outcome of community-acquired pneumonia. International Journal of Tuberculosis and Lung Disease, 19(6), 729-734. DOI:

Lips, P. (2010). Worldwide status of vitamin D nutrition. The Journal of Steroid Biochemistry and Molecular Biology, 121(1-2), 297-300. DOI:

Lips, P., Cashman, K. D., Lamberg-Allardt, C., Bischoff-Ferrari, H. A., Obermayer-Pietsch, B., Bianchi, M. L., Stepan, J., Fuleihan, G. E.-H., & Bouillon, R. (2019). Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. European Journal of Endocrinology, 180(4), P23-P54. DOI:

Martín Giménez, V. M., Inserra, F., Ferder, L., García, J., & Manucha, W. (2020a). Vitamin D deficiency in African Americans is associated with a high risk of severe disease and mortality by SARS-CoV-2. Journal of Human Hypertension, 2020, 1-3. DOI:

Martín Giménez, V. M., Inserra, F., Tajer, C. D., Mariani, J., Ferder, L., Reiter, R .J., & Manucha, W. (2020b). Lungs as target of COVID-19 infection: Protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment. Life Sciences, 254, 117808. DOI:

Martineau, A. R., Jolliffe, D. A., Hooper, R. L., Greenberg, L., Aloia, J. F., Bergman, P., Dubnov-Raz, G., Esposito, S., Ganmaa, D., Ginde, A. A., Goodall, E. C., Grant, C. C., Janssens, W., Jensen, M. E., Kerley, C. P., Laaksi, I., Manaseki-Holland, S., Mauger, D., Murdoch, D. R., Neale, R., Rees, J. R., Simpson, S., Stelmach, I., Trilok Kumar, G., Urashima, M., Camargo, C.A., Griffiths, C. J., & Hooper, R. L. (2019). Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technology Assessment, 23(2), 1-44. DOI:

Mead, M. N. (2008). Benefits of sunlight: a bright spot for human health. Environmental Health Perspectives, 116(4), A197. DOI:

Meltzer, D. O., Best, T. J., Zhang, H., Vokes, T., Arora, V., & Solway, J. (2020). Association of Vitamin D Status and Other Clinical Characteristics With COVID-19 Test Results. JAMA Network Open, 3(9), e2019722. DOI:

Merzon, E., Tworowski, D., Gorohovski, A., Vinker, S., Golan Cohen, A., Green, I., & Frenkel-Morgenstern, M. (2020). Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS Journal, 10.1111/febs.15495. DOI:

Mocayar Marón, F. J., Ferder, L., Reiter, R. J., & Manucha, W. (2020. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. The Journal of Steroid Biochemistry and Molecular Biology, 199, 105595. DOI:

Panula, J., Pihlajamäki, H., Mattila, V. M., Jaatinen, P., Vahlberg, T., Aarnio, P., & Kivelä, S. L. (2011). Mortality and cause of death in hip fracture patients aged 65 or older: a population-based study. BMC Musculoskelet. Disorders, 12, 105. DOI:

Raoult, D.; Zumla, A., Locatelli, F., Ippolito, G., & Kroemer, G. (2020). Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress, 4(4), 66-75. DOI:

Reiter, R. J., Sharma, R., Ma, Q., Liu, C., Manucha, W., Abreu- González, P., & Domínguez- Rodríguez, A. (2020). Plasticity of glucose metabolism in activated immune cells: advantages for melatonin inhibition of COVID-19 disease. Melatonin Research, 3, 346-361. DOI:

Rondanelli, M., Miccono, A., Lamburghini, S., Avanzato, I., Riva, A., Allegrini, P., Faliva, M.A., Peroni, G., Nichetti, M., & Perna, S. (2018). Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters (Physical Barriers, Innate and Adaptive Immunity) Involved during an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds. Evidence-Based Complementary and Alternative Medicne, 2018, 5813095. DOI:

Rosano, A., Bella, A., Gesualdo, F., Acampora, A., Pezzotti, P., Marchetti, S., Ricciardi, W., & Rizzo, C. (2019). Investigating the impact of influenza on excess mortality in all ages in Italy during recent seasons (2013/14-2016/17 seasons). International Journal of Infectious Diseases, 88, 127-134. DOI:

Rosen, C.J., Adams, J.S., Bikle, D.D., Black, D.M., Demay, M.B., Manson, J.E., Murad, M.H., Kovacs, C.S. (2012) The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocrine Reviews, 33(3), 456-92. DOI:

Ross, A. C., Taylor, C. L., Yaktine, A. L., & Del Valle, H. B. (2011). Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. The national academies collection: Reports funded by national institutes of health. Dietary reference intakes for calcium and vitamin D. Washington (DC): National Academies Press (US). National Academy of Sciences.

Sabetta, J. R., DePetrillo, P., Cipriani, R. J., Smardin, J., Burns, L. A., & Landry, M. L. (2010). Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults. PLoS One, 5(6), e11088. DOI:

Scholtens, R. M., van Munster, B. C., van Kempen, M. F., & de Rooij, S. E. (2016). Physiological melatonin levels in healthy older people: A systematic review. Journal of Psychosomatic Research, 86, 20-27. DOI:

Shaman, J., Pitzer, V. E., Viboud, C., Grenfell, B. T., Lipsitch, M. (2010). Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol, 8(2), e1000316. DOI: 10.1371/journal.pbio.1000316

Spiro, A., & Buttriss, J. L. (2014). Vitamin D: An overview of vitamin D status and intake in Europe. Nutrition Bulletin, 39(4), 322-350. DOI:

Teymoori-Rad, M., Shokri, F., Salimi, V., & Marashi, S. M. (2019). The interplay between vitamin D and viral infections. Reviews in Medical Virology, 29(2), e2032. DOI:

Treanor, J. J., Talbot, H. K., Ohmit, S. E., Coleman, L. A., Thompson, M. G., Cheng, P. Y., Petrie, J. G., Lofthus, G., Meece, J. K., Williams, J. V., Berman, L., Breese Hall, C., Monto, A. S., Griffin, M. R., Belongia, E., Shay, D. K., & Network, U. S. (2012). Flu-VE. Effectiveness of seasonal influenza vaccines in the United States during a season with circulation of all three vaccine strains. Clinical Infectious Diseases, 55(7), 951-959. DOI:

Van Schoor, N., & Lips, P. (2011). Worldwide Vitamin D Status. Best Practice and Research: Clinical Endocrinology and Metabolism, Best Practice and Research: Clinical Endocrinology and Metabolism, 25(4), 671-680. DOI:

Xie, J., & Zhu, Y. (2020). Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of the Total Environment, 724, 138201. DOI:

Zehnder, D., Bland, R., Williams, M. C., McNinch, R. W., Howie, A. J., Stewart, P. M., & Hewison, M. (2001). Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. The Journal of Clinical Endocrinology and Metabolism, 86(2), 888-894. DOI:

Zimmerman, S., & Reiter, R. (2019). Melatonin and the Optics of the Human Body. Melatonin Research, 2(1), 138-160. DOI:

Zisi, D., Challa, A., & Makis, A. (2019). The association between vitamin D status and infectious diseases of the respiratory system in infancy and childhood. Hormones (Athens), 18(4), 353-363. DOI:

Approved By TCI (2020 - 2024)

Indexed in