Journal of Current Science and Technology

ISSN 2630-0656 (Online)

Preparation of puerarin-loaded zein nanoparticles: characterization and stability study

  • Vilai Rungsardthong, Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangsue, Bangkok, Thailand, Corresponding author; E-mail: vilai.r@sci.kmutnb.ac.th
  • Usaraphan Pithanthanakul, Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangsue, Bangkok, Thailand
  • Chureerat Puttanlek, Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
  • Dudsadee Uttapap, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkhuntian, Bangkok, Thailand
  • Korawinvich Boonpisuttinant, Department of Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Prathumthani, Thailand


The Thai herb Pueraria mirifica has been used in cosmetics, dietary supplements and natural health products for a long time because of its rejuvenation properties.  In this study, zein was used to enhance the stability during four-month storage of puerarin, the glycosylic isoflavone in the Pueraria extract (PE).  Zein nanoparticles (ZNs) were prepared by the liquid-liquid dispersion method.  The process was based on dissolving zein in 85% aqueous ethanol, followed by shearing the stock solution into citrate solution, and ethanol was removed by rotary vacuum evaporation.  Three different loading percentages (10, 20 and 30%) of PE were applied, and the characteristics of puerarin loaded-zein nanoparticles (PuZNs) were investigated for their size, per cent yield, per cent encapsulation efficiency (% EE) and stability.  The results showed that the particles size and zeta potential of PuZNs varied from 165.3 ± 2.4 nm to 232.8 ± 1.9 nm and -26.7 ± 0.8 mV to -31.3 ± 1.3 mV, respectively.  Increasing the % PE loading increased % yield and % EE of puerarin. Scanning electron microscopy images showed that the PuZNs were spherical with an average size of less than 200 nm.  The puerarin of Pueraria extract in the ZNs from 20 and 30% PE loading presented stability during four months of storage at 4 ± 1°C.  The results indicated the potential use of zein for encapsulation of puerarin to maintain its stability for food applications.

Keywords: encapsulation efficiency; Pueraria extract; puerarin; Pueraria mirifica; zein nanoparticles; zeta potential

PDF (557.95 KB)

DOI: 10.14456/jcst.2021.9


Bodner, C. C., & Hymowitz, T. (2002). Ethnobotany of Pueraria species. Pueraria: The genus Pueraria (pp. 29-58). In W. M. Keung (Ed.). London, UK: Taylor & Francis.

Chansakaow, S., Ishikawa, T., Sekine, K., Okada, M., Higuchi, Y., Kudo, M., & Chaichantipyuth, C. (2000). Isoflavonoids from Pueraria mirifica and their estrogenic activity. Planta Medica, 66(6), 572-575. DOI: https://doi.org/10.1055/s-2000-8603

Che, S., Yuan, J., Zhang, L., Ruan, Z., Sun, X., & Lu, H. (2020). Puerarin prevents epithelial tight junction dysfunction induced by ethanol in Caco-2 cell model. Journal of Functional Foods, 73, 104079. DOI: https://doi.org/10.1016/j.jff.2020.104079

Cherdshewasart, W., & Sutjit, W. (2008). Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobata tubers. Phytomedicine, 15(1-2), 38-43. DOI: https://doi.org/10.1016/j.phymed.2007.07.058

Donsì, F., Voudouris, P., Veen, S. J., & Velikov, K. P. (2017). Zein-based colloidal particles for encapsulation and delivery of epigallocatechin gallate. Food Hydrocolloids, 63, 508-517. DOI: https://doi.org/10.1016/j.foodhyd.2016.09.039

Elzoghby, A. O., Elgohary, M. M., & Kamel, N. M. (2015). Implications of protein- and peptide-based nanoparticles as potential vehicles for anticancer drugs. Advances in Protein Chemistry and Structural Biology, 98, 169-221. DOI: https://doi.org/10.1016/bs.apcsb.2014.12.002

Guo, H. X., Heinämäki, J., & Yliruusi, J. (2008). Stable aqueous film coating dispersion of zein. Journal of Colloid and Interface Science, 322(2), 478-484. DOI: https://doi.org/10.1016/j.jcis.2007.11.058

Huang, M. S., Chanapongpisa, P., Yasurin, P., Kitsubthawee, K., Phetsom, J., & Lindayani, Ir. (2020). Centella asiatica extract loaded BSA nanoparticles using the organic and conventional C. asiatica to improve bioavailability activity and drug delivery system. Applied Science and Engineering Progress, 13(1), 11-18. DOI: https://doi.org/10.14416/j.asep.2020.01.001

Jiang, J., Oberdörster, G., Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11, 77-89. DOI: https://doi.org/10.1007/s11051-008-9446-4

Kerr, A. (1932). A reputed rejuvenator. The Natural History Bulletin of the Siam Society, 8(4), 336-338.

Kim, H. W., Kim, J. B., Shanmugavelan, P., Kim, S. N., Cho, Y. S., Kim, H. R., Lee, J.T., Jeon, W.T., & Lee, D. J. (2013). Evaluation of γ-oryzanol content and composition from the grains of pigmented rice-germplasms by LC-DAD-ESI/MS. BMC Research Notes, 6(1), 149-159. DOI: https://doi.org/10.1186/1756-0500-6-149

Luo, Y., Zhang, B., Whent, M., Yu, L. (Lucy), & Wang, Q. (2011a). Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces B: Biointerfaces, 85(2), 145-152. DOI: https://doi.org/10.1016/j.colsurfb.2011.02.020

Luo, C.-F., Yuan, M., Chen, M.-S., Liu, S.-M., Zhu, L., Huang, B.-Y., Liu, X.-W. & Xiong, W. (2011b). Pharmacokinetics,tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration. International Journal of Pharmaceutics, 410, 138–144. DOI: http://dx.doi.org/10.1016/j.ijpharm.2011.02.064

Maji, A. K., Banerjee, D., Maity, N., & Banerji, P. (2012). A validated RP-HPLC-UV method for quantitative determination of puerarin in Pueraria tuberosa DC tuber extract. Pharmaceutical Methods, 3(2), 79-83. DOI: https://doi.org/10.4103/2229-4708.103879

Maji, A. K., Pandit, S., Banerji, P., & Banerjee, D. (2014). Pueraria tuberosa: A review on its phytochemical and therapeutic potential. Natural Product Research, 28(23), 2111-2127. DOI: https://doi.org/10.1080/14786419.2014.928291

Malaivijitnond, S. (2012). Medical applications of phytoestrogens from the Thai herb Pueraria mirifica. Frontiers of Medicine, 6(1), 8-21. DOI: https://doi.org/10.1007/s11684-012-0184-8

Office of Agricultural Economics. (2007). Annual research report: Thai herbal economies case studies of roselle, safflower and white Kwao Krua. Bangkok, Thailand: Ministry of Agriculture and Cooperatives.

Padua, G. W., & Wang, Q. (2009). Controlled self-organization of zein nanostructures for encapsulation of food ingredients. In Q. Huang, P. Given, & M. Qian (Eds.), Micro/Nanoencapsulation of Active Food Ingredients (Vol. 1007, pp. 143-156). American Chemical Society. DOI: https://doi.org/10.1021/bk-2009-1007.ch009

Paliwal, R., & Palakurthi, S. (2014). Zein in controlled drug delivery and tissue engineering. Journal of Controlled Release, 189, 108-122. DOI: https://doi.org/10.1016/j.jconrel.2014.06.036

Patel, A. R., & Velikov, K. P. (2014). Zein as a source of functional colloidal nano- and microstructures. Current Opinion in Colloid & Interface Science, 19(5), 450-458. DOI: https://doi.org/10.1016/j.cocis.2014.08.001

Peerakam, N., Sirisa-Ard, P., Huy, N. Q., On, T. V., Long, P. T., & Intharuksa, A. (2018). Isoflavonoids and phytoestrogens from Pueraria candollei var. mirifica related with appropriate ratios of ethanol extraction. Asian Journal of Chemistry, 30(9), 2086-2090. DOI: https://doi.org/10.14233/ajchem.2018.21440

Penalva, R., González-Navarro, C. J., Gamazo, C., Esparza, I., & Irache, J. M. (2017). Zein nanoparticles for oral delivery of quercetin: Pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomedicine: Nanotechnology, Biology and Medicine, 13(1), 103-110. DOI: https://doi.org/10.1016/j.nano.2016.08.033

Raharjo, S., Purwandari, F. A., Hastuti, P., & Olsen, K. (2019). Stabilization of black rice (Oryza sativa, L. indica) anthocyanins using plant extracts for copigmentation and maltodextrin for encapsulation. Journal of Food Science, 84(7), 1712-1720. DOI: https://doi.org/10.1111/1750-3841.14688

Rastogi, S., Katara, A., Pandey, M. M., Arora, S., Singh, R. R. B., & Rawat, A. K. S. (2013). Physical stability and HPLC analysis of Indian Kudzu (Pueraria tuberosa Linn.) fortified milk. Evidence-Based Complementary and Alternative Medicine, 2013, 1-6. DOI: https://doi.org/10.1155/2013/368248

Rodsuwan, U., Pithanthanakul, U., Thisayakorn, K., Uttapap, D., Boonpisuttinant, K., Vatanyoopaisarn, S., Thumthanaruk, B., & Rungsardthong, V. (2020). Preparation and characterization of gamma oryzanol loaded zein nanoparticles and its improved stability, Food Science and Nutrition. First published: 30 December 2020. DOI: https://doi.org/10.1002/fsn3.1973

Rocchio, J., Neilsen, J., Everett, K., & Bothun, G. D. (2017). A solvent-free lecithin-Tween 80 system for oil dispersion. Colloids and Surfaces A Physicochemical and Engineering Aspects,533, 218-223. DOI: https://doi.org/10.1016/j.colsurfa.2017.08.038

Roger, E., Lagarce, F., Garcion, E., & Benoit, J.-P. (2010). Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine, 5(2), 287-306. DOI: https://doi.org/10.2217/nnm.09.110

Tapia-Hernández, J. A., Del Toro Sánchez, C. L., Cinco Moroyoqui, F. J., Ruiz-Cruz, S., Juárez, J., Castro Enríquez, D. D., Barreras-Urbina, C. G., López-Ahumada, G. A., & Rodríguez Félix, F. (2019). Gallic acid-loaded zein nanoparticles by electrospraying process. Journal of Food Science, 84(4), 818-831. DOI: https://doi.org/10.1111/1750-3841.14486

Thao, N. T. T., & Niwat, C. (2018). Effect of germinated colored rice on bioactive compounds and quality of fresh germinated colored rice noodle. KMUTNB International Journal of Applied Science and Technology, 11(1), 27-37. DOI: https://doi.org/10.14416/j.ijast.2017.12.008

Trisomboon, H., Malaivijitnond, S., Suzuki, J., Hamada, Y., Watanabe, G., & Taya, K. (2004). Long-Term treatment effects of Pueraria mirifica phytoestrogens on parathyroid hormone and calcium levels in aged menopausal cynomolgus monkeys. Journal of Reproduction and Development, 50(6), 639-645. DOI: https://doi.org/10.1262/jrd.50.639

Trisomboon, H., Malaivijitnond, S., Watanabe, G., & Taya, K. (2004). Estrogenic Effects of Pueraria mirifica on the menstrual cycle and hormone-related ovarian functions in cyclic female cynomolgus monkeys. Journal of Pharmacological Sciences, 94(1), 51-59. DOI: https://doi.org/10.1254/jphs.94.51

Urasopon, N., Hamada, Y., Asaoka, K., Cherdshewasart, W., & Malaivijitnond, S. (2007). Pueraria mirifica, a phytoestrogen-rich herb, prevents bone loss in orchidectomized rats. Maturitas, 56(3), 322-331. DOI: https://doi.org/10.1016/j.maturitas.2006.09.007

Van der Maesen, L. J. G. (2002). Pueraria: botanical characteristics. Pueraria: The genus Pueraria (pp. 1-28). In W. M. Keung (Ed.). London, UK: Taylor & Francis.

Wanandorn, P. W. (1933). A reputed rejuvenator. The Natural History Bulletin of the Siam Society, 9(1), 145-7.

Wang, Y., & Padua, G. W. (2010). Formation of zein microphases in ethanol-water. Langmuir, 26(15), 12897-12901. DOI: https://doi.org/10.1021/la101688v.

Wei, S. Y., Chen, Y., & Xu, X. Y. (2014). Progress on the pharmacological research of puerarin: A review. Chinese Journal of Natural Medicines, 12(6), 407-414. DOI: https://doi.org/10.1016/S1875-5364(14)60064-9

Zhang, Y., Wang, R., Wu, J., & Shen, Q. (2012). Characterization and evaluation of self-microemulsifying sustained release pellet formulation of puerarin for oral delivery. International Journal of Pharmaceutics, 427, 337-344. DOI: http://dx.doi.org/10.1016/j.ijpharm.2012.02.013

Zhou, Y. X., Zhang, H., & Peng, C. (2014). Puerarin: A review of pharmacological effects. Phytotherapy Research, 28(7), 961-975. DOI: https://doi.org/10.1002/ptr.5083

Approved By TCI (2020 - 2024)

Indexed in