Login or Register to make a submission.

JCST

Journal of Current Science and Technology

ISSN 2630-0656 (Online)

Effect of X-ray diagnostic energy to peripheral blood mononuclear cells and CD34+/CD133+ expression: an in vitro study

  • Nutthapong Moonkum, Faculty of Radiological Technology, Rangsit University, Patumthani 12000, Thailand, Corresponding author; E-mail: Nutthapong.m@rsu.ac.th
  • Umpolprot Wongpiem, Faculty of Radiological Technology, Rangsit University, Patumthani 12000, Thailand
  • Soontaree Sriwongta, Faculty of Radiological Technology, Rangsit University, Patumthani 12000, Thailand
  • Nuttapong Danthanawat, Faculty of Radiological Technology, Rangsit University, Patumthani 12000, Thailand
  • Gunjanaporn Tochaikul, Faculty of Radiological Technology, Rangsit University, Patumthani 12000, Thailand
  • Chalermchai Pilapong, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

X-rays are high-energy waves that have a great ability to penetrate other materials.  For that reason, X-rays are often used in medical applications to diagnose and treat cancer.  There are many benefits for patients from medical imaging but X-rays can damage the cells in human body.  The aim of this research was to study the effects of diagnostic X-rays on peripheral blood mononuclear cells (PBMCs) and CD34+/CD133+ populations in healthy volunteers in vitro and determine the ratio of CD34+/CD133+ in PBMCs.  The PBMCs were isolated by ficoll-centrifugation technique.  The morphology and CD34+/CD133+ expression of PBMCs were observed by inverted microscope and flow cytometry at 1 hr, 1, 5, 10, and 15 days after irradiation based on plain film x-ray technique of 70-110 kVp, 5-40 mAs, and radiation dose of 0.47-2.30 mGy.  Freshly isolated PBMCs were spherical and after X-ray irradiation at day 15 revealed that the morphology was similar in both groups and the CD34+/CD133+ expression showed no difference from control when using the lowest radiation dose at 0.47 mGy.  The overall results indicated that increasing the radiation dose had significant effects on PBMCs and the CD34+/CD133+ population of cells.  Despite these negative effects, the benefits of radiation to both workers and patients outweigh the drawbacks.

Keywords: CD34+, CD133+, ionizing radiation, peripheral blood, peripheral blood mononuclear cells, X-ray diagnostic

PDF (784.54 KB)

DOI: 10.14456/jcst.2021.5

References

AbuSamra, D. B., Aleisa, F. A., Al-Amoodi, A. S., Jalal Ahmed, H. M., Chin, C. J., Abuelela, A. F., Bergam, P., Sougrat, R., Merzaban, J. S. (2017). Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood advances, 1(27), 2799-2816. DOI: 10.1182/bloodadvances.2017004317

Alessio, N., Del Gaudio, S., Capasso, S., Di Bernardo, G., Cappabianca, S., Cipollaro, M., Peluso, G., Galderisi, U. (2015). Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget, 6(10), 8155. DOI: 10.18632/oncotarget.2692

Beer, L., Nemec, L., Wagner, T., Ristl, R., Altenburger, L. M., Ankersmit, H. J., & Mildner, M. (2017). Ionizing radiation regulates long non-coding RNAs in human peripheral blood mononuclear cells. Journal of radiation research, 58(2), 201-209. DOI: 10.1093/jrr/rrw111

Chen, M., Huang, Q., Xu, W., She, C., Xie, Z.-G., Mao, Y.-T., Dong, Q. R., Ling, M. (2014). Low-dose X-ray irradiation promotes osteoblast proliferation, differentiation and fracture healing. PLoS One, 9(8), e104016. DOI: 10.1371/journal.pone.0104016

Ishikawa, J., Hayashi, N., Yamaguchi, M., Monzen, S., & Kashiwakura, I. (2015). Characteristics of human CD34+ cells exposed to ionizing radiation under cytokine-free conditions. Journal of radiation research, 56(4), 678-690. DOI: 10.1093/jrr/rrv024

Jaime-Pérez, J. C., Villarreal-Villarreal, C. D., Vázquez-Garza, E., Méndez-Ramírez, N., Salazar-Riojas, R., & Gómez-Almaguer, D. (2016). Flow cytometry data analysis of CD34+/CD133+ stem cells in bone marrow and peripheral blood and T, B, and NK cells after hematopoietic grafting. Data in brief, 7, 1151-1155. DOI: 10.1016/j.dib.2016.03.078

Jiang, H., Xu, Y., Li, W., Ma, K., Cai, L., & Wang, G. (2008). Low-dose radiation does not induce proliferation in tumor cells in vitro and in vivo. Radiation research, 170(4), 477-487. DOI: 10.1667/rr1132.1

Jones, J. G. A., Mills, C. N., Mogensen, M. A., & Lee, C. I. (2012). Radiation dose from medical imaging: a primer for emergency physicians. Western Journal of Emergency Medicine, 13(2), 202-210. DOI: 10.5811/westjem.2011.11.6804

Kantapan, J., Moonkum, N., Jaruchainiwat, S., Suttana, W., Sangthong, P., & Mankhetkorn, S. (2016). Characteristics of peripheral blood stem cells: 2D-gel electrophoresis and kinetic parameter of exocytosis. Current Biomarkers (Formerly: Recent Patents on Biomarkers), 6(2), 113-123. DOI: 10.2174/2468422806666161124123746

Lund, P., Joø, G., Westvik, Å.-B., Øvstebø, R., & Kierulf, P. (2000). Isolation of monocytes from whole blood by density gradient centrifugation and counter-current elutriation followed by cryopreservation: six years' experience. Scandinavian journal of clinical and laboratory investigation, 60(5), 357-366. DOI: 10.1080/003655100750019260

Moonkum, N., Chaichana, A., Kantakhum, P., Malimart, C., Piyachon, C., Chananpanich, N., & Mankhetkorn, S. (2018). Siamois polyphenols as circulating endogenous stem cell regulators: Primordial sources for repair and regeneration of tissue in vivo. The Open Biomarkers Journal, 8(1). Publisher Item Identifier (PII): BMS-TOBIOMJ-2018-4

Pochampally, R. R., Smith, J. R., Ylostalo, J., & Prockop, D. J. (2004). Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood, 103(5), 1647-1652. DOI: 10.1182/blood-2003-06-1967

Rothkamm, K., & Löbrich, M. (2003). Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proceedings of the National Academy of Sciences, 100(9), 5057-5062. DOI: 10.1073/pnas.0830918100

Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S., & Hopkinson, A. (2014). Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem cells, 32(6), 1380-1389. DOI: 10.1002/stem.1661

Stewart, F., Akleyev, A., Hauer-Jensen, M., Hendry, J., Kleiman, N., Macvittie, T., Aleman, B., Edgar, A., Mabuchi, K., Muirhead, C., Shore, R., Wallace, W. (2012). ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Annals of the ICRP, 41(1-2), 1-322. DOI: 10.1016/j.icrp.2012.02.001

Takahashi, M., Matsuoka, Y., Sumide, K., Nakatsuka, R., Fujioka, T., Kohno, H., Sasaki, Y., Matsui, K., Asano, H., Kaneko, K., Sonoda, Y. (2014). CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia, 28(6), 1308-1315. DOI: 10.1038/leu.2013.326

Zhang, M., & Huang, B. (2012). The multi-differentiation potential of peripheral blood mononuclear cells. Stem cell research & therapy, 3(6), 48. DOI: 10.1186/scrt139

Indexed in

TCI Tier 1 (2020-2024)

Search