Login or Register to make a submission.

JCST

Journal of Current Science and Technology

ISSN 2630-0656 (Online)

Circadian and non-circadian melatonin: influences on glucose metabolism in cancer cells

  • Russel J. Reiter, Department of Cell Systems and Anatomy, UT Health San Antonio, Texas 78229, USA & Department of Molecular Genetics, University of Lodz, Lodz, 90-137 Łódź, Poland, Corresponding author; E-mail: reiter@uthscsa.edu
  • Ramaswamy Sharma, Department of Cell Systems and Anatomy, UT Health San Antonio, Texas 78229, USA
  • Qiang Ma, Department of Cell Systems and Anatomy, UT Health San Antonio, Texas 78229, USA
  • Sergio Rosales-Corral, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
  • Walter Manucha, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina

Abstract

This review considers the role of melatonin as an oncostatic agent and particularly as to how it relates to the mechanisms by which melatonin regulates glucose metabolism in cancer cells.  Many tumor cells adopt a means of glucose utilization that is different from that of healthy cells.  Thus, these cancer cells rapidly take up and metabolize glucose and after it is converted to pyruvate, they accelerate the production of lactate which is abundantly released into the circulation.  The change in metabolism that cancer cells makes is referred to as aerobic glycolysis.  The switch to aerobic glycolysis affords cancer cells major advantages in terms of an accelerated rate of ATP production and the synthesis of abundant molecular building blocks required for rapid proliferation, invasion, and metastasis.  In normal cells, the bulk of the pyruvate formed is shunted into the mitochondria for conversion to acetyl-CoA.  Melatonin is both produced and released in a circadian manner from the pineal gland and likely by the mitochondria of all normal cells in a non-circadian manner.  In cancer cells, melatonin forces them to abandon aerobic glycolysis and function phenotypically as a normal cell by upregulating the enzyme, pyruvate dehydrogenase complex, that catalyzes pyruvate to acetyl-CoA; this is presumably achieved by the direct or indirect inhibition of pyruvate dehydrogenase kinase, which normally downregulates pyruvate dehydrogenase complex.  By depriving cancer cells of aerobic glycolysis, melatonin reverts them to a normal cell phenotype thereby reducing the rapid cell proliferation and aggressive nature of cancer cells.

Keywords: aerobic glycolysis, angiogenesis, cancer metastasis, glucose metabolism, Hypoxia inducible factor-1α, pyruvate dehydrogenase kinase

PDF (588.52 KB)

DOI: 10.14456/jcst.2020.9

References

Abdel-Wahab, A. F., Mahmoud, W., & Al-Harizy, R. M. (2019). Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacology Research, 150, 104511. DOI: https://doi.org/10.1016/j.phrs.2019.104511

Acuna-Castroviejo, D., Escames, G., Venegas, C., Diaz-Casado, M. E., Lima-Cabello, E., Lopez, L. C., Rosales-Corral, S., Tan, D. X., & Reiter, R. J. (2014). Extrapineal melatonin: sources, regulation, and potential functions. Cellular and Molecular Life Sciences, 71(16), 2997-3025. DOI: https://doi.org/10.1007/s00018-014-1579-2

Almohammed, Z. N. J., Moghani-Ghoroghi, F., Ragerdi-Kashani, I., Fathi, R., Tahaei, L. S., Naji, M., & Pasbakhsh, P. (2020). The effect of melatonin on mitochondrial function and autophagy in in vitro matured oocytes of aged mice. Cell Journal, 22(1), 9-16. DOI: https://doi.org/10.22074/cellj.2020.6302

Anderson, G. (2019). Daytime orexin and night-time melatonin regulation of mitochondria melatonin: roles in circadian oscillations systemically and centrally in breast cancer symptomatology. Melatonin Research, 2(2), 1-8. DOI: https://doi.org/10.32794/mr11250037

Anderson, G., & Reiter, R. J. (2019). Glioblastoma: role of mitochondria N-acetylserotonin/melatonin ratio in mediating effects of miR-451 and aryl hydrocarbon receptor and in coordinating wider biochemical changes. International Journal of Tryptophan Research, 12, 1-9. DOI: https://doi.org/10.32794/mr11250037

Atlante, A., de Bari, L., Bobba, A., & Amadoro, G. (2017). A disease with a sweet tooth: exploring the Warburg effect in Alzheimer’s disease.  Biogerontology, 18, 301-319. DOI: https://doi.org/10.1007/s10522-017-9692-x

Back, K., Tan, D. X., & Reiter, R. J. (2016). Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. Journal of Pineal Research, 61, 426-437. DOI: https://doi.org/10.1111/jpi.12364

Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125, 5591-5596. DOI: https://doi.org/10.1242/jcs.116392

Bensinger, S. J., & Christofk, H. R. (2012). New aspects of the Warburg effect in cancer cell biology. Seminars on Cell Development Biology, 23, 352-361. DOI: https://doi.org/10.1016/j.semcdb.2012.02.003

Blask, D. E., Dauchy, R. T., Dauchy, E. M., Mao, L., Hill, S. M., Green, M. W., Belancio, V. P., Sauer, L. A., & Davidson, L. (2014). Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention. PLoS One, 9, 102776. DOI: https://doi.org/10.1371/journal.pone.0102776

Bubenik, G. A. (1980). Localization of melatonin in the digestive tract of the rat: effect of maturation, diurnal variation, melatonin treatment and pinealectomy. Hormone Research, 12, 313-323. DOI: https://doi.org/10.1159/000179137

Burns, J. S., & Manda, G. (2017). Metabolic pathways of the Warburg effect in health and disease: perspectives in choice, chain or chance. International Journal of Molecular Sciences, 18, E2755. DOI: https://doi.org/10.3390/ijms18122755

Carbajo-Pescador, S., Ordonez, R., Benet, M., Jover, R., Garcia-Palomo, A., Mauriz, J. L., & Gonzalez-Gallego, J. (2013). Inhibition of VEGF expression through blockade of HIF-1α and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. British Journal of Cancer, 109, 83-91. DOI: https://doi.org/10.1038/bjc.2013.285

Cardinali, D. P. (2019). Melatonin: clinical perspectives in neurodegeneration. Frontiers in Endocrinology, 10, 480. DOI: https://doi.org/10.3389/fendo.2019.00480

Chen, Y., Cairns, R., Papandreou, I., Koong, A., & Denko, N. C. (2009). Oxygen consumption can regulate the growth of tumors, new perspective on the Warburg effect. PLoS One, 4, e7033. DOI: https://doi.org/10.1371/journal.pone.0007033

Cho, S. Y., Lee, H. J., Jeong, S. J., Lee, H. J., Kim, H. S., Chen, C. Y., Lee, E. O., & Kim, S. H. (2011). Sphingosine kinase 1 pathway is involved in melatonin-induced HIF1α in activation in hypoxic PL-3 prostate cancer cells. Journal of Pineal Research, 51, 87-93. DOI: https://doi.org/10.1111/j.1600-079X.2011.00865.x

Choi, G. H., Lee, H. Y., & Back, K. (2017). Chloroplast overexpression of rice caffeic acid
O-methyltransferase increases melatonin production in chloroplasts via the 5-methoxytryptamine pathway in transgenic rice plants. Journal of Pineal Research, 63, E21412. DOI: https://doi.org/10.1111/jpi.12412

Chuffa, L. G., Ferreira, F. R., Smaniotto Cucielo, M., Spaulonci Silveira, H., Reiter, R. J., & Lupi, L. A. (2019). Clock genes and the role of melatonin in cancer cells: an overview. Melatonin Research, 2, 133-157. DOI: https://doi.org/10.32794/mr11250026

Colombo, J., Wolf Maciel, J. M., Carvalho Ferreira, L., da Silva, R. F., & Zuccari, D. A. P. (2016). Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells.  Oncology Letters, 12, 231-237. DOI: https://doi.org/10.3892/ol.2016.4605

Courtnay, R., Ngo, D. C., Malik, N., Ververis, K., Tortorella, S. M., & Karagiannis, T. C. (2015). Cancer metabolism and the Warburg effect: the role of HIF-1 and PL3K. Molecular Biology Reports, 42, 841-851. DOI: https://doi.org/10.1007/s11033-015-3858-x

Dai, M., Cui, P., Yu, M., Han, J., Li, H., & Xiu, R. (2008). Melatonin modulates the expression of VEGF and HIF-1α induced by CoCl2 in cultured cancer cells. Journal of Pineal Research, 44, 121-126. https://doi.org/10.1111/j.1600-079X.2007.00498.x

Dang, C. V., Kim, J. W., Gao, P., & Yustein, J. (2008). The interplay between MYC and HIF in cancer. Nature Reviews Cancer, 8, 51-56. DOI: https://doi.org/10.1038/nrc2274

Dauchy, R. P., Wren-Dail, M. A., Dupepe, L. M., Hill, S. M., Xiang, S., Anbalagan, M., Belacio, V. P., Dauchy, E. M., & Blask, D. E. (2018). Effect of daytime blue-enriched LED light on the nighttime circadian melatonin inhibition of hepatoma 7288CTC Warburg effect and progression. Comparative Medicine, 68, 269-279. DOI: https://doi.org/10.30802/AALAS-CM-17-000107

Dubbels, R., Reiter, R. J., Klenke, E., Goebel, A., Schnakenberg, E., Ehlers, C., Schiwara, H. W., & Schloot, W. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research, 18, 28-31. DOI: https://doi.org/10.1111/j.1600-079x.1995.tb00136.x

Dubocovich, M. L. (1984). N-acetyltryptamine antagonizes the melatonin-induced inhibition of (3-H)-dopamine release from the retina. European Journal of Pharmacology, 105, 193-194. DOI: 10.1038/306782a0

Gabaldon, T. (2018). Relative timing of mitochondrial endosymbiosis and the “pre-mitochondrial symbioses” hypothesis. IUBMB Life, 70, 1188-1196. DOI: https://doi.org/10.1002/iub.1950

Ganguly, S., Coon, S. L, & Klein, D. C. (2002). Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell & Tissue Research, 309, 127-137. DOI: https://doi.org/10.1007/s00441-002-0579-y

Goncalves Ndo, N., Colombo, J., Ramos Lopes, J., Bottaro Gelaleti, G., Gobbe Moschetta, M., Martins Sonehara, N., Hellmen, E., de Freitas Zanon, C., Oliani, S. M., & Zuccari, D. P. C. (2016). Effect of melatonin in epithelial mesenchymal transition markers and invasive properties of breast cancer stem cells of canine and human cell lines. PLoS One, II, e0150407. DOI: https://doi.org/10.1371/journal.pone.0150407

Hattori, A., Migitaka, H., Iigo, M., Itoh, M., Yamamoto, K., Ohtani-Kaneko, R., Hara, M., Suzuki, T., & Reiter, R. J. (1995). Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International, 35, 627-634.

He, C., Wang, J., Zhang, Z., Yang, M., Tian, X., Li, Y., Ma, T., Tao, J., Zhu, K., Song, Y., et al. (2016). Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. International Journal of Molecular Sciences, 17, E939. DOI: https://doi.org/10.3390/ijms17060939

Hill, S. M., Belancio, V. P., Dauchy, R. T., Xiang, S., Brimer, S., Mao, L., Hauch, A., Lundberg, P. W., Summers, W., Yuan, L., et al. (2015). Melatonin: an inhibitor of breast cancer. Endocrine Related Cancer, 22, R183-R124. DOI: https://doi.org/10.1530/ERC-15-0030

Huo, X., Wang, C., Yu, Z., Peng, Y., Wang, S., Feng, S., Zhang, S., Tian, X., Sun, C., Liu, K. et al. (2017). Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. Journal of Pineal Research, 62, e12390. DOI: https://doi.org/10.1111/jpi.12390

Jin, L., & Zhou, Y. (2019). Crucial role of the pentose phosphate pathway in malignant tumors. Oncology Letters, 17, 4213-4221. DOI: https://doi.org/10.3892/ol.2019.10112

Lacerda, J. Z., Ferreira, L. C., Lopes, B. C., Aristizabal-Pachon, A. F., Bajgelman, M. C., Borin, T. F., & Zuccari, D. A. P. C. (2019). Therapeutic potential of melatonin in the regulation of miR-148a-3p and angiogenic factors in breast cancer. Microrna, 8, 237-247. DOI: https://doi.org/10.2174/2211536608666190219095426

Lai, Y. H., Hu, D. N., Rosen, R., Sassoon, J., Chuang, L. Y., Wu, K. Y., & Wu, W. C. (2017). Hypoxia-induced vascular endothelial growth factor secretion by retinal pigment epithelial cells is inhibited by melatonin via decreased accumulation of hypoxia-inducible factor-1α protein. Clinical and Experimentology Ophthalmology, 45, 182-191. DOI: https://doi.org/10.1111/ceo.12802

Lee, J. H., Yoon, Y. M., Song, K. H., Noh, H., & Lee, S. H. (2020). Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell, 2020, e13111. DOI: https://doi.org/10.1111/acel.13111

Lee, K., Choi, G. H., & Back, K. (2017). Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase. Journal of Pineal Research, 63, E12441. DOI: https://doi.org/10.1111/jpi.12441

Li, Y., Li, S., Zhou, Y., Meng, X., Zhang, J. J., Xu, D. P., & Li, H. B. (2017). Melatonin for the prevention and treatment of cancer. Oncotarget, 8, 39896-39921. DOI: https://doi.org/10.18632/oncotarget.16379

Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: how does it benefit cancer cells? Trends in Biochemical Sciences, 41, 211-218. DOI: https://doi.org/10.1016/j.tibs.2015.12.001

Lima Mota, A., Jardim-Perassi, B. V., de Castro, T. B., Colombo, J., Martins Sonehara, N., Gomez Nishiyama, V. K., Goncalves-Pierri, V. A., & Zuccari, D. A. (2016). Melatonin modifies tumor hypoxia and metabolism by inhibiting HIF1α and energy metabolic pathways in the in vitro and in vivo models of breast cancer. Melatonin Research, 2, 83-98. DOI: https://doi.org/10.32794/mr11250042

Majidinia, M., Reiter, R. J., Shakouri, S. K. & Yousefi, B. (2018). The role of melatonin, a multitasking molecule, in retarding the processes of aging. Ageing Research Reviews, 47(2018), 198-213. DOI: 10.1016/j.arr.2018.07.010

Manchester, L. C., Poeggeler, B., Alvares, F. L., Ogden, G. B., & Reiter, R. J. (1995). Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system. Cellular and Molecular Biology Research, 41(5), 391-395.

Mao, L., Dauchy, R. T., Blask, D. E., Dauchy, E. M., Slakey, L. M., Brimer, S., Yuan, L., Xiang, S., Hauch, A., Smith, K., et al. (2016). Melatonin suppression of aerobic glycolysis (Warburg effect), survival signaling and metastasis in human leiomyosarcoma. Journal of Pineal Research, 60(2), 167-177. DOI: https://doi.org/10.1111/jpi.12298

Marques, J. H. M., Mota, A. L., Oliveira, J. G., Lacerda, J. Z., Stefani, J. P., Ferreira, L. C., Castro, T. B., Aristizabal-Pachon, A. F., & Zuccari, D. A. P. C. (2018). Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: in vivo and in vitro studies. Life Sciences, 208, 131-138. DOI: https://doi.org/10.1016/j.lfs.2018.07.012

Mayo, J. C., Cernuda, R., Quiros, I., Rodriguez, P., Garcia, J. I., Hevia, D. E., & Sainz, R. M. (2019). Understanding the role of melatonin in cancer metabolism. Melatonin Research, 2(3), 76-104. DOI: https://doi.org/10.32794/11250032

Mocayar-Maron, F. J., Diez, E., Reiter, R. J., & Manucha, W. (2019). Roles of melatonin in maintaining mitochondrial welfare: focus on renal cells. In: Handbook of Mitochondrial Dysfunction, editor Ahmad, S. I. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group. (1st ed.), 389-398. DOI: https://doi.org/10.1201/9780429443336

Mocayar-Maron, F. J., Ferder, L., Reiter, R. J. & Manucha, W. (2020). Daily and seasonal mitochondrial protection: unraveling common possible mechanisms involving vitamin D and melatonin. Journal of Steroid Biochemistry and Molecular Biology, 199, 105595. DOI: https://doi.org/10.1016/j.jsbmb.2020.105595

Mortezaee, K., Potes, Y., Mirtavoos-Mahyari, H., Motevaseli, E., Shabeeb, D., Musa, A. E., Najafi, M., & Farhood, B. (2019). Boosting immune system against cancer by melatonin: a mechanistic viewpoint. Life Sciences, 238, 116960. DOI: https://doi.org/10.1016/j.lfs.2019.116960

Oliveira, J. G., Mora Marques, J. H., Lacerda, J. Z., Carvalha Ferreira, L., Campos Coelho, M. M., & Zuccari, D. A. (2019). Melatonin down-regulates micro RNA-10a and decreases invasion and migration of triple-negative breast cancer cells. Melatonin Research, 2(2), 86-99. DOI: https://doi.org/10.32794/mr11250023

Park, S., Jeon, J. H., Min, B. K., Ha, C. M., Thoudam, T., Park, B. Y., & Lee, I. K. (2018). Role of the pyruvate dehydrogenase complex in metabolic remodeling: differential pyruvate dehydrogenase complex functions in metabolism. Diabetes & Metabolism Journal, 42(4), 270-281. DOI: https://doi.org/10.4093/dmj.2018.0101

Park, S. Y., Jang, W. J., Yi, E. Y., Jang, J. Y., Jung, Y., Jeong, J. W., & Kim, Y. J. (2010). Melatonin suppresses tumor angiogenesis by inhibiting HIF-1α stabilization under hypoxia. Journal of Pineal Research, 48(2), 178-184. DOI: https://doi.org/10.1111/j.1600-079X.2009.00742.x

Poeggeler, B., & Hardeland, R. (1994). Detection and quantification of melatonin in a dinoflagellate, Gonyaulax polyedra: solutions to the problem of methoxyindole destruction in non-vertebrate material. Journal of Pineal Research, 17(1), 1-10. DOI: https://doi.org/10.1111/j.1600-079x.1994.tb00106.x

Prado, N. J., Casarotto, M., Calvo, J. P., Mazzei, L., Ponce-Zumino, A. Z., Garcia, I. M., Cuello-Carrion, F. D., Fornes, M. W., Diez, E. R., & Manucha, W. (2018). Antiarrhythmic effect linked to melatonin cardiorenal protection involves AT1 reduction and Hsp70-VDR increase. Journal of Pineal Research, 65(4), e12513. DOI: https://doi.org/10.1111/jpi.12513

Prieto-Dominguez, N., Ordonez, R., Fernandez, A., Mendez-Blanco, C., Baulies, A., Garcia-Ruiz, C., Fernandez-Checa, J. C., Mauriz, J. L., & Gonzalez-Gallego, J. (2016). Melatonin-induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. Journal of Pineal Research, 61(3), 396-407. DOI: https://doi.org/10.1111/jpi.12358

Puente-Moncada, N., Sanchez-Sanchez, A. M., Antolin, I., Herrera, F., Rodriguez-Blanco, J., Duarte-Olivenza, C., Turos-Cabal, M., Rodriguez, C., & Martin, V. (2020). Melatonin targeting of Warburg effect in FLT3-ITD acute myeloid leukemia cells. Journal of Pineal Research, in press.

Reiter, R. J., & Rosales-Corral, S. (2019). Melatonin reprograms glucose metabolism in cancer cell mitochondria. Series in Endocrinology, Diabetes and Metabolism, 1(3), 52-61.

Reiter, R. J., Tan, D. X., & Fuentes-Broto, L. (2010). Melatonin: a multitasking molecule. Progress in Brain Research, 181, 127-151. DOI: https://doi.org/10.1016/S0079-6123(08)81008-4

Reiter, R. J., Tan, D. X., Kim, S .J., & Cruz, M. H. (2014). Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces.  Brain Structure and Function, 219(6), 1873-1887. DOI: https://doi.org/10.1007/s00429-014-0719-7

Reiter, R. J., Mayo, J. C., Tan, D. X., Sainz, R. M., Alatorre-Jimenez, M., & Qin, L. (2016). Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research, 61(3), 253-278. DOI: https://doi.org/10.1111/jpi.12360

Reiter, R. J., Sharma, R., Ma, Q., Rosales-Corral S. A., Acuna-Castroviejo, D., & Escames, G. (2019). Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy. Melatonin Research, 2(3), 105-119. DOI: https://doi.org/10.32794/mr11250033

Reiter, R.J., Ma, Q. & Sharma, R. (2020a). Melatonin in mitochondria: mitigating clear and present dangers. Physiology (Bethesda), 35(2), 86-95. DOI: https://doi.org/10.1152/physiol.00034.2019

Reiter, R. J., Sharma, R., Ma, Q., Rosales-Corral, S., & de Almeida Chuffa, L. G. (2020b). Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cellular and Molecular Life Sciences, in press. DOI: https://doi.org/10.1007/s00018-019-03438-1

Sanchez-Barcelo, E. J., Mediavilla, M. D., Alonso-Gonzalez, C., & Reiter, R.J. (2012). Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opinion in Investigational Drugs, 21(6), 819-831. DOI: https://doi.org/10.1517/13543784.2012.681045

Sanchez-Sanchez, A. M., Antolin, I., Puente-Moncada, N., Suarez, S., Gomez-Lobo, M., Rodriguez, C., & Martin, V. (2015). Melatonin cytotoxicity is associated to Warburg effect inhibition in Ewing sarcoma cells. PLoS One, 10(8), e0135420. DOI: https://doi.org/10.1371/journal.pone.0135420

Schwartz, L., Supuran, C. T., & Alfarouk, K. O. (2017). The Warburg effect and the hallmark of cancer. Anticancer Agents in Medicinal Chemistry, 17(2), 164-170. DOI: https://doi.org/10.2174/1871520616666161031143301

Sjoblom, M., & Flemstrom, G. (2001). Central nervous system stimuli increase duodenal bicarbonate secretion by release of mucosal melatonin. Journal of Physiology and Pharmacology, 52(4 Pt 1), 671-678.

Su, S. C., Hsieh, M. J., Yang, W. E., Chung, W. H., Reiter, R. J., & Yang, S. F. (2017). Cancer metastasis: mechanisms of inhibition by melatonin. Journal of Pineal Research, 62(1), e12370. DOI: https://doi.org/10.1111/jpi.12370

Suofu, Y., Li, W., Jean-Alphonse, F. G., Khattar, N. K., Li, J., Baranov, S.V., Leronni, D., Mihalik, A. C., He, Y., Cecon, E., Wehbi, V. L., et al. (2017). Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proceedings of the National Academy of Sciences USA, 114(38), E7997-E8006. DOI: https://doi.org/10.1073/pnas.1705768114

Sutendra, G., & Michelakis, E. D. (2013). Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Frontiers in Oncology, 3, 38. DOI: https://doi.org/10.3389/fonc.2013.00038

Tan, D. X., Manchester, L. C., Reiter, R. J., Qi, W., Hanes, M. A., & Farley, N. J. (1999). High physiological levels of melatonin in the bile of mammals. Life Science, 65(23), 2523-2529. DOI: https://doi.org/10.1016/s0024-3205(99)00519-6

Tan, D. X., Manchester, L. C., Liu, X., Rosales-Corral, S. A., Acuna-Castroviejo, D., & Reiter, R. J. (2013). Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. Journal of Pineal Research 54(2), 127-138. DOI: https://doi.org/10.1111/jpi.12026

Tan, D.-X., & Reiter, R. J. (2019). Mitochondria: the birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Research, 2(1), 44-66. DOI: https://doi.org/10.32794/mr11250011

Tordjman, S., Chokron, S., Delorme, R., Charrier, A., Bellissant, E., Jaafari, N., & Fougerou, C. (2017). Melatonin: pharmacology, functions and therapeutic benefits. Current Neuropharmacology, 15(3), 434-443. DOI: https://doi.org/10.2174/1570159X14666161228122115

Tricoire, H., Locatelli, A., Chemineau, P., & Malpaux, B. (2002). Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology, 143(1), 84-90. DOI: https://doi.org/10.1210/endo.143.1.8585

Vaupel, P., Schmidberger, H., & Mayer, A. (2019). The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. International Journal of Radiation Biology, 95(7), 912-919. DOI: https://doi.org/10.1080/09553002.2019.1589653

Venegas, C., Garcia, J. A., Escames, G., Ortiz, F., Lopez, A., Doerrier, C., Garcia-Corzo, L., Lopez, L. C., Reiter, R. J., & Acuna-Castroviejo, D. (2012). Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. Journal of Pineal Research, 52(2), 217-227. DOI: https://doi.org/10.1111/j.1600-079X.2011.00931.x

Xu, X. D., Shao, S. X., Jiang, H. P., Cao, Y. W., Wang, Y. H., Yang, X. C., Wang, Y. L., Wang, X. S., & Niu, H. T. (2015). Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncology Research and Treatment, 38, 117-122. DOI: https://doi.org/10.1159/000375435

Yamamoto, T., Takano, N., Ishiwata, K., Ohmura, M., Nagahata, Y., Matsuura, T., Kamata, A., Sakamato, K., Nakanishi, T., Kubo, A., et al. (2018). Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nature Communications, 5, 3480. DOI: https://doi.org/10.1038/ncomms4480

Zawilska, J. B. (1994). The role of dopamine in the regulation of melatonin biosynthesis in the vertebrate retina. Acta Neurobiologiae Experimentalis, 54(Suppl), 47-56.

Zhang, Y., Liu, Q., Wang, F., Ling, E. A., Liu, S., Wang, L., Yang, Y., Yao, L., Chen, X., Wang, F., et al. (2013). Melatonin antagonizes hypoxia-mediated glioblastoma cell migration and invasion via inhibition of HIF-1α. Journal of Pineal Research, 55(2), 121-130. DOI: https://doi.org/10.1111/jpi.12052

Zhao, D., Yu, Y., Shen, Y., Liu, Q., Zhao, Z., Sharma, R., & Reiter, R. J. (2019). Melatonin synthesis and function: evolutionary history in animals and plants. Frontiers in Endocrinology, 10, 249. DOI: https://doi.org/10.3389/fendo.2019.00249

Zheng, X., Tan, D. X., Allan, A. C., Zuo, B., Zhao, Y., Reiter, R. J., Wang, L., Wang, Z., Guo, Y., Zhou, Z., Shan, D., et al. (2017). Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Scientific Reports, 7, [41236]. DOI: https://doi.org/10.1038/srep41236

Zonta, Y. R., Martinez, M., Camargo, I. C., Domeniconi, R. F., Lupi Junior, L. A., Pinheiro, P. F., Reiter, R. J., Martinez, F. E., & Chuffa, L. G. (2017). Melatonin reduces angiogenesis in serous papillary ovarian carcinoma of ethanol-preferring rats. International Journal of Molecular Science, 18(4), E763. DOI: https://doi.org/10.3390/ijms18040763

Approved By TCI (2020 - 2024)

Indexed in

Search