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Abstract 
This research presents the identification of producer gas resulting from the conversion of a given type of 

biomass in a downdraft gasifier, the use of a neural network (NN) to predict the identity for a given biomass type and  

the comparison of the NN prediction to measured results of biomass fuel conversions.  Each type of biomass has 

different characteristics which affect the composition of the producer gas and thus its effective energy content.  This 

research predicts the composition of the producer gas from the characteristics of the biomass by creating a mathematical 

model using a neural network.  The model is then used to run simulations which are compared to actual measured 

values from experiments and then the accuracy of the simulations are verified with Simulink/MATLAB.  The results 

show that the simulation predicts the CO content of producer gas with an average error of 1.73%, 7.01% for H2, and 

1.58% for CH4.  The simulation predicts the higher heating value with an average error of 0.73% and a lower heating 

value with an average error of 0.81%. 
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1.  Introduction 

Energy consumption in Thailand is 

increasing for both household and industrial uses, 

which leads to increased demand for fossil fuels 

such as fuel oil, natural gas, coal, etc.  Renewable 

energy is an alternative source of energy which 

decreases the import of fossil fuels and reduces 

global warming.  Biomass can be a source of 

renewable energy.  It is a cheap fuel source and 

plentiful in Thailand.  The use of biomass can help 

to reduce the demand on fuel imports.  Moreover, 

the energy produced from biomass by using proper 

technology will reduce pollution and global 

warming.  One clean technology, which can be 

used to produce energy from biomass is a gasifier.  

Gasifiers can change solid biomass into a gas 

which is called a producer gas.  It has a higher 

heating value than just burning the original 

biomass and it is easier to control the rate of 

combustion.  Producer gas can be used to reduce 

the use of fossil fuels.  

The amount of biomass available in 

Thailand is high.  Each type is different in physical 

and chemical properties.  These properties affect 

the composition and heat value of producer gas 

that is produced from each type of fuel.  Being able 

to accurately estimate the heat values of producer 

gases that are generated from each biomass, can be 

used for classifying biomass for its most suitable 

application.  

  

2.  Objective 

To study the composition of producer gas 

resulting from biomass conversion by a downdraft 

gasifier and create a model of the conversion using 

a neural network.  The accuracy of the model is 

then verified against producer gas composition 

measurements obtained from experiments are then 

used to verify the accuracy of the model using 

Simulink/MATLAB. 

 

3.  Theory 

3.1 Downdraft gasifier  

Downdraft gasifier as shown in Figure 1 

has special characteristics where the combustion 

zone at the center of reactor has smaller diameter 

(throat) than the main reactor.  This condition 

causes the gasification process to be more 

complicated.  The gas production is influenced by 

the diameter of the throat and the continuity of fuel 

flow down inside of the reactor, especially when it 

passed through the throat (Sivakumar, Ragunathan, 

& Elango, 2014; Montuori, Vargas, & Alcázar-

Ortega, 2015).  Fuel continuity will travel down 
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depending on the proportionality of fuel size to the 

throat diameter.  The suitable design will help the 

production of combustible gas in gasification 

process. 

 

 

 
 

 

Figure 1 Downdraft gasifier furnace. (Chenxi, Ruthut, 
& Sukanya, 2011) 

 

 

The various zones in the downdraft 

gasifier as shown in Figure 1 are as follows: 

 

3.1.1.  Combustion zone (Ingle & Lakade, 2015) 

In the combustion zone, the oxygen in the 

air-stream reacts with the carbon and hydrogen in 

the fuel to reduce carbon and hydrogen to form 

carbon dioxide and water. Carbon dioxide is 

obtained from carbon and water is obtained from 

the hydrogen in the biomass fuel. Also, exothermic 

reaction takes place here and the temperatures is 

normally 1100 - 1500˚C. The main reactions are: 

HeatCOOC 22     (1) 

HeatO2HO2H 222    (2) 

 

 

3.1.2. Reduction zone (Ingle & Lakade, 2015) 

The partial combustion products, carbon 

dioxide (CO2) and water (H2O) that are obtained 

from the combustion zone are now passed through 

the reduction zone.  Here, CO2 and H2O are 

reduced to form carbon monoxide (CO) and 

hydrogen (H2) by absorbing heat from the 

combustion zone.  The combustion zone raises the 

temperature of the reduction zone to promote the 

carbon/steam gasification reaction which has 

higher activation energy.  This reaction requires 

temperature of 900˚C or above.  Over 90% of CO2 

is reduced to CO at temperatures above 900 ˚C.  

The main reactions are:  

 

Boudouard Reaction:     

HeatCO2COC 2    (3) 

Water Gas Reaction:      

HeatHCOOHC 22    (4) 

Water Gas Reaction:      

HeatH2COOH2C 222    (5) 

Water Shift Reaction:     

HeatHCOOHCO 222    (6) 

Methanation Reaction:   

HeatCHH2C 42     (7) 

 

3.1.3. Pyrolysis zone (Sanjay Gupta, 2006) 
Biomass pyrolysis is an intricate process. 

Products depend on temperature, pressure and heat 
losses.  Up to 200 ˚C, only water is driven off. In 
range 200-280 ˚C, CO2, acetic acid, and water are 
given off.  In range 280-500 ˚C, real pyrolysis 
occurs and produces large quantities of tar and 
gases containing CO2.  In the range of 500-700 ˚C, 
gas production is small and contains hydrogen. 
The main reactions are:  

 

TarAcidusPyroligneo

HCCHOHCOCOCharcoalHeatbiomassDry 62422





     (8) 

3.1.4. Drying zone (Sanjay Gupta, 2006) 

Biomass is being dried in the drying zone. 

Usually the moisture content of biomass is 10-

30%.  Some organic acids come out during drying 

process which may cause corrosion of gasifiers.  

The main reactions are: 

steambiomassDryHeatBiomass  (9) 

 

3.2 Heat energy of producer gas 

 For higher heating value (HHV) and 

lower heating value (LHV) of producer gas can be 

found in equations (10) and (11), which are in 

kJ/m
3
 units (Kowkasikum, 1994).  

)H(C
2

n
)2(CH)2016(HHHVLHV nm42   

     (10) 
)H70770(C)39984(CH)12810(H12684(CO)HHV 6242      

        )H133518(C)H101472(C)H64218(C 1028242 

      (11) 
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3.3 Biomass fuels 

Biomass gasifier can be designed for a 

wide range of biomass fuels such as corn cob, 

coconut shell, Eucalyptus, and bamboo.  Biomass 

fuels from different sources will have different 

qualities, but the important factor that affects the 

quality of biomass fuels is the amount of carbon 

that is in the fuels.  For biomass fuels with high 

carbon content, the producer gas will have a high 

heating value.  For the analysis and testing of solid 

biomass fuels, it needs to be complied with ASTM 

standards, including proximate analysis in 

accordance with ASTMD3172, ultimate analysis 

by ASTMD3176, and heating value according to 

ASTM D2105  (Jittabut et al., 2010). The 

properties of some biomass fuels are shown in 

Table 1 and Table 2. 
 

 

 
Table 1  The properties of some biomass fuels (Proximate analysis)* 

Biomass fuel Moisture, % Fixed Carbon, % Volatile Matter, % Ash, % 

Coconut shell 4.23 18.22 76 1.43 
Eucalyptus 1.14 17.90 79.70 2.64 

Bamboo 5.89 20.73 70.48 2.90 
Corncob 10.6 5.54 80.8 3.09 

Wood chip 8.28 12.82 73.12 5.81 

*(Jareansuk & Patarakeadvit, 2015; Homduang, Dudsade, & Sasujit, 2015; Narongthong & Sottigulanun, 2013) 
 

 
Table 2  The properties of some biomass fuels (Ultimate Analysis)* 

Biomass fuel C,% H,% O, % N, % S, % Cl, % 
HHV, 
kJ/kg 

LHV, 
kJ/kg 

Coconut shell 46.20 5.42 47.46 0.87 0.05 0.10 20202 20188 
Eucalyptus 48.93 8.05 42.28 0.58 0.09 1.67 18557 18392 

Bamboo 44.76 5.98 16.21 0.11 0.04 ND 17418 16162 
Corncob 42.28 6.34 40.26 1.20 ND ND 24092 22,472 

Wood chip 43.73 6.09 40.41 0.16 ND ND 23897 22,386 

*(Jareansuk & Patarakeadvit, 2015; Homduang et at., 2015;  Narongthong & Sottigulanun, 2013) 

 

 

3.4 Neural network (NN) learning and training 

NN has outstanding features in terms of 

fast and accurate calculations (Widrow & Lehr, 

1990; Janpong, Areerak, & Areerak, 2011). 

Therefore NN is suitable for applying as a 

mathematical model to identify the downdraft 

gasifier.  This paper uses a backpropagation neural 

network (BPNN) for this identification.  A feed-

forward backpropagation network toollbox in 

MATLAB is used for learning and training (Beale, 

Hagan, & Demuth, 1992-2013 a); (Beale, Hagan, 

& Demuth, 1992-2013 b) as shown in equations 

(12) - (14).  The learning and training structure of 

BPNN for this research is 4 layers called 1x8x8x6 

BPNN; the first layer or the input layer has 1 node, 

the second and the third layer has 8 nodes and the 

fourth layer or the output layer has 6 nodes.  The 

transfer functions for layers 1, 2, 3 and 4 are 

logsig, logsig, logsig, purelin, respectively.  The 

BPNN structure is shown in Figure 2 and the 

equation of the output for each layer is shown in 

equation (15) - (18).  The BPNN learning and 

training uses 11 inputs that consist of a number of 

elements that are the biomass components and 

various parameters that effect the burns on a 

downdraft gasifier.  The six target values are the 

producer gases as shown in the article (Jareansuk 

& Patarakeadvit, 2015; Homduang et at., 2015; 

(Narongthong & Sottigulanun, 2013).  For learning 

and training, the weight and bias are adjusted, 

which the output value of NN is close to the target 

value. 

 

net = newff(PR,[S1 S2...SNl],{TF1    

TF2...TFNl},BTF,BLF,PF)  (12) 

[net,tr] = train(net,input,taget,Xi,Ai,EW) (13) 

 

[Y,Xf,Af,E,perf] = sim(net,input)  (14) 
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Figure 2 Learning and training structure of BPNN  
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where 
l

nxiW
 
is the weight value of the layer l with 

n nodes and the I inputs. 
 

l

nx1b
 
is the bias value of 

the layer l with n nodes. 
l

nx1a  is the output value of 

the layer l with n nodes. 

The parameters from the BPNN design 

are used in learning and training.  The results are 

shown in Figure 3.  The weight and bias values 

updating is the process of learning and training of 

BPNN.  The difference between the BPNN's 

output and the target value is called the mean 

square error (MSE), which must less than the set 

value 
10101  .  The NN adjusts the weight and 

bias value by 575 iterations.  This process results 

in getting a proper weight and bias value for the 

mathematical modeling to identify the operation of 

the downdraft gasifier using the neural network as 

show in Equations (19) - (26).  

 

4.  Methodology 

4.1 Simulation setup 

This step is to create a mathematical 

model to identify the type of downdraft gasifier.  

The data is from the learning and training of 

BPNN based on the past research on the 

production of producer gas from biomass 

(Jareansuk & Patarakeadvit, 2015; Homduang et 

at., 2015; Narongthong & Sottigulanun, 2013).  

The proper weight and bias values are used as 

parameters for mathematical modeling in 

Simulink/MATLAB as shown in Figure 4.  After 

creating the model, Identification tests will be 

performed by entering the 11 input values for the 

biomass properties and the output of the model 

will be the producer gasses, which its calculation 

can be shown in Figure 4. 

 
 
 

4.2.  Experimental setup 

4.2.1  Designing and building a downdraft gasifier 

furnace 

This step is designing and building a 

downdraft gasifier furnace.  The furnace is 

cylindrical, 1.43 m in length, with 4 layers, inside 

diameter 0.36 m, and outside diameter 0.46 m.  

The inner wall is fireproof brick, sealed with 

fireproof mortar, covered with insulation, and the 

outer layer is sheet steel.  The downdraft gasifier 

furnace is shown in Figure 5. 

 

4.2.2 Bamboo fuel analysis 

Bamboo fuel was analyzed by proximate 

analysis according to ASTMD3172 and ultimate 

analysis by ASTMD3176 and the heating value 

according to ASTM D2105.  The bamboo fuel 

used in the experiment has a scientific name 

“Dendrocalamus sericeus”. 

 

4.2.3 Downdraft gasifier furnace testing 

Test the downdraft gasifier furnace and 

collect the sample of producer gas produced to 

analyze the gas components and the heating value. 
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(a) Neural network training        

                   

             

(b) Performance 

Figure 3 BPNN learning and training result 
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(a) 1x8x8x6_NN Gas Computing via Neural Network block 

 

                
(b) Simulation test block 

 

Figure 4 The gasifier identification via neural network on Simulink/MATLAB 

 

 
Figure 5  Downdraft Gasifier furnace 
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5.  Results and discussion 

5.1 Simulation results 

The simulation of the downdraft gasifier 

furnace, choosing bamboo fuel can be resulted as 

in Table 3 and Figure 6 

Table 3 and Figure 6 show the best 

simulated result is 0.00253 kg/s flow rate of air 

into the downdraft gasifier furnace.  The producer 

gas is composed of 21.25% carbon monoxide 

(CO), 7.38 % methane (CH4), 11.02% hydrogen 

(H2), 24.61% carbon dioxide (CO2), 33.06% 

nitrogen (N2), and 2.72% oxygen (O2).  

Compositions of producer gas can be seen that 

only 3 types are gas fuels; these are carbon 

monoxide, hydrogen, and methane.  In addition to 

this flow rate of air, the higher heating value was 

7040.64 kJ / kg and the lower heating value was 

6818.18 kJ / kg.  This is the highest among other 

flow rates. 

 

 

Table 3 The producer gas from simulation (Bamboo Fuel) 

Air flow rate, kg/s 
Producer gas, % by volume HHV 

kJ/kg 
LHV 
kJ/kg 

CO CH4 H2 CO2 N2 O2 

0.00253 21.25 7.38 11.02 24.61 33.06 2.72 7040.64 6818.18 

0.00269 19.76 6.89 13.34 22.98 34.43 2.59 6971.71 6702.50 
0.00273 19.54 6.84 13.93 22.53 34.59 2.56 6997.39 6716.29 
0.00296 19.83 6.68 10.45 25.52 35.11 2.42 6523.21 6312.28 

 

 

 
 

Figure 6  The producer gas from simulation 
 
 

5.2  Experimental results 

The analysis of the properties of bamboo 

fuel by Proximate analysis and Ultimate Analysis 

found that the Moisture 5.89% Fixed Carbon 20.73 

% , Volatile Matter 70.48 %  Ash 2.90 %  carbon  

44.76 % , hydrogen 5.98 %, oxygen 16.21 %, 

nitrogen 0.11% ,sulfur 0.04 % ,higher heating 

value (HHV) 17418kJ/kg and lower heating value 

(LHV) 16162 kJ/kg .  The results of the producer 

gas analysis are shown in Table 4 and Figure 7. 

From the results of the downdraft gasifier 

furnace test as shown in Table 4 and Figure 7, it 

was found that the flow rate of air was 0.00253 

kg/s providing the best amount of producer gas.  

The producer gas produced consists of carbon 

monoxide (CO) 22.37%, methane (CH4) 7.67%, 

hydrogen (H2) 9.29%, carbon dioxide (CO2) 

25.83%, nitrogen (N2) 32.02%, and oxygen (O2) 

2.82%.  In addition, the higher heating value was 

7096.06 kJ/kg and lower heating value was 

6908.48 kJ/kg, which is higher than the other air 

flow rate. 
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Table 4  The producer gas from experimental (Bamboo Fuel) 

Air flow rate, 
kg/s 

Producer gas, % by volume HHV 
kJ/kg 

LHV 
kJ/kg CO CH4 H2 CO2 N2 O2 

0.00253 22.37 7.67 9.29 25.83 32.02 2.82 7096.06 6908.48 
0.00269 19.90 6.95 13.41 22.89 34.25 2.60 7020.83 6750.20 
0.00273 19.77 6.87 12.88 23.38 34.52 2.58 6905.25 6645.34 
0.00296 19.84 6.63 10.53 25.49 35.20 2.32 6516.23 6303.74 

 

 

 
 

Figure 7 The producer gas from experimental 

 

 

5.3 Comparison of simulation results and 

experimental results. 

The test results are similar to the 

simulation model. Table 5 and Figure 8 show the 

quantity and composition of the producer gas in 

comparison between the actual test and the 

simulation model. 

Table 5 and Figure 8 show that the 

amount of gas, obtained from the simulation 

results and the results from the actual tests are very 

similar, for example at 0.00253 kg/s air flow rate; 

the results from the simulation for carbon 

monoxide were 21.25%, 7.38% for methane and 

11.02 % for hydrogen. While the results from the 

actual test were 22.37%, 7.67% and 9.29%, 

respectively. 

 

5.4 Accuracy of simulations 

In general, the accuracy of the model can 

be obtained by comparing the results between the 

simulation and the experimental results.  These are 

generally expressed in error percentages.  As 

shown in Table 6 and Figures 9 to11.  

 

 
Table 5 The producer gas and the heating value from experiment and simulation 

Producer  
Gas 

Air flow rate kg/s 

0.00253 0.00269 0.00273 0.00296 

Exp. Sim. Exp. Sim. Exp. Sim. Exp. Sim. 

CO 22.37 21.25 19.90 19.76 19.77 19.54 19.84 19.83 
CH4 7.67 7.34 6.95 6.89 6.87 6.84 6.63 6.68 
H2 9.29 11.02 13.41 13.34 12.88 13.93 10.53 10.45 

CO2 25.83 24.61 22.89 22.98 23.38 22.53 25.49 25.52 
N2 32.02 33.06 34.25 34.43 34.52 34.59 35.20 35.11 
O2 2.81 2.72 2.60 2.59 2.58 2.56 2.32 2.42 

HHV 7096.06 7040.64 7020.83 6971.71 6905.25 6997.39 6516.23 6523.21 
LHV 6908.48 6818.18 6750.20 6702.50 6645.34 6716.29 6303.74 6312.28 
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Figure 8  The producer gas from the simulation and the experimental 
 

 
 

Table 6  The percentage error of producer gas and heating value 

Producer Gas, % by volume 
Air flow rate, kg/s 

Average % 
0.00253 0.00269 0.00273 0.00296 

CO 5.03 0.70 1.17 0.03 1.73 
CH4 4.38 0.81 0.48 0.66 1.58 
H2 18.63 0.52 8.16 0.73 7.01 

CO2 4.73 0.39 3.62 0.13 2.22 
N2 3.25 0.53 0.21 0.24 1.06 
O2 3.41 0.54 0.80 3.96 2.18 

HHV, kJ/kg 0.78 0.70 1.33 0.11 0.73 
LHV, kJ/kg 1.31 0.71 1.07 0.14 0.81 

 

 

 

 
 

Figure 9  The percentage error of producer gas 
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Table 6 and Figures 9 to 11 show the 

percentage error of producer gas and heat energy 

from the downdraft gasifier furnace. By comparing 

the results from the model and the actual test, it 

was found that the air flow rate is ranged from 

0.00253 to 0.00296 kg/s, the error for carbon 

monoxide (CO) is varied from 0.03-5.03%, 0.48-

4.38% for methane (CH4), 0.52-18.63% for 

hydrogen (H2), 0.13-4.73% for carbon dioxide 

(CO2), 0.25-3.25%, for nitrogen (N2), and 0.54-

3.96% for oxygen (O2).  Therefore, the average 

errors of producer gas are 1.73% for CO, 1.58% 

for CH4, 7.01% for H2, 2.22% for CO2, 1.06% for 

N2, and 2.18% for O2.  For the error of the heat 

energy, we found that higher heating values are 

varied from 0.11-1.33% and the average value is 

0.73%.  Lower heating values are varied from 

0.14-1.31%, giving the average value of 0.81%.  

These errors are minimal. 

 

 

 
 
Figure 10  The heat energy form the simulation and the experimental 

 

 

 
Figure 11 The percentage error of heat energy 
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6.  Conclusions 

By comparing the quantity of composition 

and the heat energy of the producer gas between 

the results obtained from the simulation model and 

the actual test, it was found that the average error 

of gas for CO is 1.73%, CH4 is 1.58%, H2 is 

7.01%, CO2 is 2.22%, N2 is 1.06%, and O2 is 

2.18%, and the average of heat energy are 0.73% 

HHV and 0.81% LHV. 

From the observation, the errors are in 

minimal so that we can use the results as the 

primary data for the production of producer gas 

(for downdraft gasifier furnace).  We can select the 

type of biomass fuel in order to produce the 

required amount of heat energy for a given 

application. 

 

7.  Reference 

Beale, M. H., Hagan, M. T., & Demuth, H. B. 

(1992-2013 a). Neural Network 

Toolbox
TM

 User’s Guide. The 

MathWorks, Inc.  

Beale, M. H., Hagan, M. T., & Demuth, H. B. (1992-

2013 b). Neural Network Toolbox
TM

 

Reference. The MathWorks, Inc. 

Chenxi, S., Ruthut, L., & Sukanya,T. (2011). Coal 

conversion and utilization for reducing 

CO2 emissions from a power plant. 

Retrieved November 7, 2018, from 

 https://www.ems.psu.edu/~elsworth/cours

es/egee580/2011/Final%20Reports/coal_i

gcc_report.pdf  

Homduang, N., Dudsade, N., & Sasujit, K. (2015). 

Testing and Performance Analysis of 

Gasifier System for Grain Drying. The 

proceedings of  the 8
th 

Thailand 

Renewable Energy for Community 

Conference (pp.103-108). Faculty of 

Engineering. Rajamangala University of 

Technology Thanyaburi, Thailand. 

Ingle, N. A., & Lakade, S. S. (2015). Design and 

development of downdraft gasifier to 

generate producer gas. Energy Procedia, 

90, 423-431. Retrieved  November 11, 

2018, from 

https://www.sciencedirect.com/science/art

icle/pii/S1876610216314199 

Janpong, S., Areerak, K-L., & Areerak, K-N. 

(2011), A literature survey of neural 

network applications for shunt active 

power filters. International Journal of 

Electrical and Computer Engineering, 

5(12) 1688-1694. 

Jareansuk, N., & Patarakeadvit, T. (2015). Design 

of heat-recirculating system that affect 

combustion reaction in reduction zone for 

downdraft gasifier. . Retrieved  November 

10, 2018, from 

http://research.rmutsb.ac.th/fullpaper/255

8/2558240240347.pdf 

Jittabut, P., Waewsak, J., Mani, M., Buaphet, P., 

Panichayunon, P., & Namsan, U. (2010). 

Potential of producer gas production from 

sawdust by using steam injection and air 

injection: A case study of Phatthalung 

Province. Thaksin University Journal, 

13(2), 56-64. 

Kowkasikum, T. (1994). Power plant engineering. 

Technology Promotion Association 

(Thailand-Japan), Thailand. 

Montuori, L., Vargas, C., & Alcázar-Ortega, M. 

(2015). Impact of the throat sizing on the 

operating arameters in an experimental fixed 

bed gasifier: Analysis, evaluation and testing. 

Renewable Energy, 83, 615-625. 

Narongthong, K., & Sottigulanun, K. (2013). Solid 

node of bamboo gasifier. A project for the 

degree of Bachelor of Mechanical 

Engineering, Rangsit University, 

Thailand. 

Sanjay Gupta, S. (2006). Technology of Biomass 

Gasification. New Delhi, India: Tata 

McGraw Hill Publishing Company 

Private Limited. 

Sivakumar, S., Ragunathan, S., & Elango, N. 

(2014). Design and optimization analysis 

of 5 kWe Downdraft Gasifier. Journal of 

Chemical and Pharmaceutical Sciences, 

Special Issue 4: December 2014, 141-

143. 

Widrow, B., & Lehr, M. A. (1990). 30 years of 

adaptive neural networks: perceptron, 

Madaline, and backpropagation. 

Proceedings of The IEEE, 78(9), 1415-

1442. DOI: 10.1109/5.58323 

 

 

https://www.sciencedirect.com/science/article/pii/S1876610216314199
https://www.sciencedirect.com/science/article/pii/S1876610216314199
http://research.rmutsb.ac.th/fullpaper/2558/2558240240347.pdf
http://research.rmutsb.ac.th/fullpaper/2558/2558240240347.pdf

