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Abstract 
A series of three-dimensional (3D) lanthanide carbonate coordination polymers [Ln(μ5-CO3)(μ2-OH)], LnIII = Pr 

(1Pr), Nd (2Nd), Sm (3Sm), Eu (4Eu), Gd (5Gd), Tb (6Tb) and Dy (7Dy), has been synthesized using solvothermal 

conditions and characterized by spectroscopic methods.  Structures of compounds 1Pr-3Sm were solved from single crystal 

X-ray diffraction (SCXRD) data, whereas microcrystals of compounds 4Eu-7Dy were not of sufficient quality for SCXRD 

analysis.  Therefore, conventional powder X-ray diffraction (PXRD) and elemental analysis have been used to verify the 

phase purity. SCXRD analysis revealed that compounds 1Pr-3Sm are isostructural and crystallize in the orthorhombic space 

group Pnma with four formula units per unit cell.  In the crystal structure, each LnIII cation is bridged by five μ5-

η2:η2:η2:η1:η1-CO3
2− and two μ2-OH− ligands forming a neutral 3D framework.  The luminescence properties of compounds 

4Eu and 6Tb were investigated in the solid state at room temperature. 
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_______________________________________________________________________________________________ 

 

1.  Introduction 

Over the past several years, the design and 

synthesis of lanthanide coordination polymers have 

attracted significant attention due to the rich 

diversity of their topological structures as well as 

their luminescent properties, which allow potential 

applications in luminescent devices, sensors, and 

lasers (Bünzli & Piguet, 2005; McMahon, Mauer, 

McCoy, Lee, & Gunnlaugsson, 2009).  In general, 

the luminescent properties of lanthanide complexes 

are derived from their 4f-4f transitions and 

coordination geometries (Mishra, Wernsdorfer, 

Abboud, & Christou, 2004; Zhao et al., 2004; Miyato 

et al., 2011; Matthes et al., 2013).  It should be noted 

that the trivalent f-block metal ions possess large 

coordination numbers and flexible coordination 

geometries (Sastri, Bünzli, Rao, Rayudu, & 

Perumareddi, 2003).  Furthermore, the nature and 

structural characteristics, as well as the ligand field 

strength, are the key factors that can affect the 

coordination number (Long, Blake, Champness, 

Wilson, & Schröder, 2001 & 2002; Han & Hill, 

2007).  These factors make it more difficult to 

control or predict the formation of structures and 

properties of trivalent lanthanide compounds.  In 

addition, lanthanide contraction may also influence 

the coordination numbers and properties (Mu et al., 

2015; Hutchings, Habib, Holmberg, Korobkov, & 

Murugesu, 2014; Regueiro-Figueroa, Esteban-

Gómez, de Blas, Rodríguez-Blas, & Platas-Iglesias, 

2014).  Thus, achieving controlled synthesis of 

desired structures with satisfactory luminescent 

properties remains a fundamental scientific 

challenge. 

One design strategy for the development of 

novel lanthanide functional materials is the use of 

carboxylic acids as bridging ligands.  These ligands 

can provide structural scaffolding, charge balance, 

act as luminescent sensitizers, and lead to significant 

magnetic interactions between the Ln
III

 ions, 

allowing for the generation of a wide range of such 

materials with interesting topologies and properties 

(Martínez-Calvo et al., 2015; Guo et al., 2015; Long 

et al., 2015; Nakai et al., 2014; Zheng et al., 2014; 

Gu et al., 2013; Dang, Zhang, Sun, & Zhang, 2012; 

Marchal, Filinchuk, Chen, Imbert, & Mazzanti, 

2009).  Among the numerous new rare earth 

compounds, some of the most intriguing are 

luminescent and magnetic lanthanide coordination 

polymers containing a small anion with trigonal 
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planar geometry such as carbonate (Zhang et al., 

2015; Hooper et al., 2014; Chesman et al., 2012; 

Langley, Moubaraki, & Murray, 2012; Bag et al., 

2012; Gass, Moubaraki, Langley, Batten, & Murray, 

2012; Gunanathan, Diskin-Posner, & Milstein, 2010; 

Andrews et al., 2007; Fang, Anderson, Neiwert, & 

Hill, 2003) or nitrate (Langley et al., 2015; Langley 

et al., 2014; Langley, Chilton, Moubaraki, & 

Murray, 2013; Xu et al., 2013; Ma et al., 2012; 

Seidel, Lorbeer, Cybińska, Mudring, & Ruschewitz, 

2012; Yan et al., 2011; Calvez, Daiguebonne, & 

Guillou, 2011).  These anions possess oxygen 

electron-donating atoms and can exhibit versatile 

coordination modes with the metal ion centers. The 

bonding modes range from μ1- to μ6, with the μ5- and 

μ6-bridging modes appearing only rarely in the 

literature. 

Inspired by these versatilities in the 

chemistry of lanthanide complexes with small 

molecule anions, we report the solvothermal 

syntheses of seven three-dimensional (3D) 

lanthanide frameworks in which the CO3
2−

 bridge to 

the Ln
III

 ions in the μ5-η
2
:η

1
:η

1
:η

1
:η

1
 bonding mode: 

[Ln(μ5-CO3)(μ2-OH)], Ln
III

 = Pr (1Pr), Nd (2Nd), Sm 

(3Sm), Eu (4Eu), Gd (5Gd), Tb (6Tb) and Dy (7Dy).  

These compounds have been characterized by 

elemental analysis, powder X-ray diffraction, and 

single crystal X-ray diffraction.  The luminescent 

properties of compounds 4Eu and 6Tb have been 

investigated in solid state at room temperature.  It 

should be noted that the crystal structure of the Sm
III

 

compound has been previously reported (Xu, Ding, 

Feng, Zhou, & Liu, 2006).  Also, the structure and 

phase transitions of the Gd
III

 compound have 

recently been studied by synchrotron powder X-ray 

diffraction (Sheu, Shih, Chuang, Li, & Yeh, 2010). 

 

2.  Objectives 

The main aim of the present study is to 

synthesize lanthanide coordination polymers 

containing a small anion with the trigonal planar 

geometry and to study the correlation between the 

crystal structure and luminescent properties. 

 

3.  Experimental section 

3.1  Materials and methods 

All chemicals used in the present study 

were reagent grade and were used without further 

purification.  All compounds were synthesized under 

an autogenous pressure in a 23 ml Teflon-lined 

autoclave.  Elemental analysis of carbon and 

hydrogen were determined with a LECO CHNS 932 

elemental analyzer.  Powder X-ray diffraction 

(PXRD) patterns of the samples were collected on a 

Bruker D8 Advance X-ray diffractometer with 

graphite-monochromatized Cu Kα radiation (λ = 

1.5418 Å) and 2θ ranging from 5 to 70º with 

scanning rate of 0.025° per second.  The 

luminescence spectra were measured at room 

temperature using a Horiba Scientific FluoroMax-4 

spectrofluorometer. 

 

3.2  Synthesis of lanthanide complexes 

[Pr((μ5-CO3)(μ2-OH)] (1Pr): A mixture of 

Pr(NO3)3·6H2O (217 mg, 0.5 mmol), Na2CO3 (60 

mg, 0.5 mmol) and LiOH·H2O (82 mg, 2 mmol) in 

H2O/DMF (2 ml, 1:1 v/v) was placed in a Teflon 

lined reactor, stirred at room temperature for 10 min, 

sealed in a 23 ml stainless steel autoclave, placed in 

an oven, and heated to 170 °C under autogenous 

pressure for 2 days.  The reaction mixture was 

cooled to room temperature.  The pale green plate 

crystals of 1Pr were separated from a residual 

uncharacterized white powder by hand under an 

optical microscope, and were washed with distilled 

H2O.  Yield: 62% (135 mg) based on Pr
III

 source.  

Anal. Calcd for CHPrO4: C, 5.51; H, 0.46. Found: C, 

5.55; H, 0.49%. 

[Nd(μ5-CO3)(μ2-OH)] (2Nd): The reaction 

was carried out using procedure similar to that for 

1Pr, starting from Nd(NO3)3·6H2O (220 mg, 0.5 

mmol) instead of Pr(NO3)3·6H2O.  The pale violet 

plate crystals of 2Nd were separated from a residual 

uncharacterized blue powder by hand under an 

optical microscope, and were washed with distilled 

H2O.  Yield: 48% (106 mg) based on Nd
III

 source.  

Anal. Calcd for CHNdO4: C, 5.43; H, 0.46%. Found: 

C, 5.40; H, 0.41%. 

[Sm(μ5-CO3)(μ2-OH)] (3Sm): The reaction 

was carried out using a procedure similar to that for 

1Pr, starting from Sm(NO3)3·6H2O (224 mg, 0.5 

mmol) instead of Pr(NO3)3·6H2O.  The light yellow 

plate crystals of 3Sm were separated from a residual 

uncharacterized yellow powder by hand under an 

optical microscope, and were washed with distilled 

H2O.  Yield: 60% (134 mg) based on Sm
III

 source.  

Anal. Calcd for CHO4Sm: C, 5.28; H, 0.44%. Found: 

C, 5.30; H, 0.48%. 

[Eu(μ5-CO3)(μ2-OH)] (4Eu): The reaction 

was carried out using a procedure similar to that for 

1Pr, starting from EuCl3·6H2O (184 mg, 0.5 mmol) 

instead of Pr(NO3)3·6H2O.  The colorless plate 

microcrystals of 4Eu were separated from a residual 

uncharacterized white powder by hand under an 
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optical microscope, and were washed with distilled 

H2O.  Yield: 49% (90 mg) based on Eu
III

 source.  

Anal. Calcd for CHEuO4: C, 5.25; H, 0.44%. Found: 

C, 5.24; H, 0.40%. 

[Gd(μ5-CO3)(μ2-OH)] (5Gd): The reaction 

was carried out using a procedure similar to that for 

1Pr, starting from Gd(NO3)3·6H2O (203 mg, 0.5 

mmol) instead of Pr(NO3)3·6H2O.  The colorless 

plate microcrystals of 5Gd were separated from a 

residual uncharacterized white powder by hand 

under an optical microscope, and were washed with 

distilled H2O.  Yield: 56% (114 mg) based on Gd
III

 

source. 

[Tb(μ5-CO3)(μ2-OH)] (6Tb): The reaction 

was carried out using a procedure similar to that for 

1Pr, starting from TbCl3·6H2O (187 mg, 0.5 mmol) 

instead of Pr(NO3)3·6H2O.  The colorless plate 

microcrystals of 6Tb were separated from a residual 

uncharacterized white powder by hand under an 

optical microscope, and were washed with distilled 

H2O.  Yield: 52% (97 mg) based on Tb
III

 source. 

Anal. Calcd for CHO4Tb: C, 5.09; H, 0.43%. Found: 

C, 5.07; H, 0.47%. 

[Dy(μ5-CO3)(μ2-OH)] (7Dy): The reaction 

was carried out using a procedure similar to that for 

1Pr, starting from Dy(NO3)3·6H2O (217 mg, 0.5 

mmol) instead of Pr(NO3)3·6H2O.  The colorless 

plate microcrystals of 7Dy were separated from a 

residual uncharacterized white powder by hand 

under an optical microscope, and were washed with 

distilled H2O.  Yield: 52% (113 mg) based on Dy
III

 

source.  Anal. Calcd for CHO4Tb: C, 5.01; H, 0.42%. 
Found: C, 5.05; H, 0.42%. 

 

3.3  X-ray crystallography 

Single cry were measured stals of all the 

title compounds were mounted to the end of a hollow 

glass fiber. X-ray intensity data at 296(2) K on a 

Bruker D8 QUEST CMOS diffractometer with 

graphite-monochromatic Mo Kα radiation (λ = 

0.71073 Å). Data reductions and absorption 

corrections were performed with the SAINT and 

SADABS software packages (Bruker, 2014), 

respectively.  The structures were solved using 

SHELXT and refined on F
2
 using SHELXL 

(Sheldrick, 2015).  Crystallographic figures were 

prepared using OLEX2 (Dolomanov, Bourhis, 

Gildea, Howard, & Puschmann, 2009).  All non-

hydrogen atoms were refined anisotropically.  The 

hydroxide H atom was located in a difference 

Fourier map and positional parameters were refined 

with Uiso(H) = 1.5Ueq(O).  For compounds 4Eu-7Dy, 

the crystals were of poor quality, often twinned, and 

did not diffract significantly at high 2θ angles 

(collected with a scan width of 0.3º in omega and phi 

and an exposure time of 45 seconds/frame), only unit 

cell parameters of these compounds were 

determined. Crystallographic data and selected 

structural refinement results for compounds 1Pr-7Dy 

are summarized in Table 1.  Crystallographic data 

(excluding structure factors) for the structures in this 

paper have been deposited with the Cambridge 

Crystallographic Data Centre, CCDC, 12 Union 

Road, Cambridge CB21EZ, UK.  Copies of the data 

can be obtained free of charge on quoting the 

depository numbers CCDC-1063235 (1Pr), CCDC-

1063236 (2Nd) and CCDC-1063237 (3Sm) (E-Mail: 

deposit@ccdc.cam.ac.uk, 

http://www.ccdc.cam.ac.uk). 

 
4.  Results and discussion 

4.1  Synthesis and phase purity 
The solvothermal reaction between nitrate 

or chloride salts of Ln
III

 and Na2CO3 in the presence 
of LiOH using a mixed solvent system, H2O and 
DMF (1:1, v/v) at 170 °C resulted in the formation of 
two products.  The first product is the major 
crystalline form of the title compounds isolated in 
moderate yields (48-62%).  Additionally, a residual 
unknown powder has been formed.  The reaction 
time has been extended from two to five days in an 
attempt to improve the product yield.  However, this 
increase in reaction time did not have the intended 
result.  On the other hand, if the reaction medium 
was a pure common solvent such as H2O, DMF, 
MeOH and EtOH, while other conditions were kept 
constant, only unknown powders could be isolated.  
In this study, the temperature of the reaction is of 
crucial importance for the crystallization of the final 
products.  Although, suitable single crystals for X-
ray structure determination can be prepared by 
maintaining the reaction temperature between 170 
and 180 °C, good quality crystalline products of 1Pr-
3Sm could only be prepared at the reaction 
temperatures close to 170 °C.  Despite many 
attempts to regrow the crystals of 4Eu-7Dy, only the 
colorless plates like microcrystals were always 
obtained.  These were always small, often twinned, 
and of poor quality.  However, the unit cell 
parameters (a, b, c and α, β, γ) and the space group 
of these compounds determined by single crystal X-
ray diffraction were very similar to those of 
compounds 1Pr-3Sm (Table 1).  Furthermore, the 
phase purity of all compounds was established using 
powder X-ray diffraction and microelemental 
analysis.  As shown in Figure 1, PXRD patterns of 
bulk materials of all compounds correspond well in 
position with the simulated ones constructed on the 
basis of the single crystal data, indicating the phase 
purity of the synthesized sample. 
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Table 1  Summary of crystallographic data for compounds 1Pr-7Dy 

 1Pr 2Nd 3Sm  

Empirical formula CHPrO4 CHNdO4 CHO4Sm  
Formula weight 217.93 221.26 227.37  
Temperature /K 296(2) 296(2) 296(2)  
Colour/Habit Pale green /plate Pale violet /plate Light yellow /plate  
Crystal size (mm) 0.10 × 0.10 × 0.16 0.06 × 0.06 × 0.10 0.08 × 0.10 × 0.10  
Crystal system Orthorhombic Orthorhombic Orthorhombic  
Space group Pnma Pnma Pnma  
a /Å 7.2679(3) 7.2221(2) 7.1366(3)  
b /Å 4.9866(2) 4.9582(2) 4.9154(2)  
c /Å 8.5171(3) 8.4808(3) 8.4584(3)  
V /Å3 308.68(2) 303.69(2) 296.71(2)  
Z 4 4 4  
Dcalc /g·cm−3  4.689 4.839 5.090  
μ /mm−1 15.61 16.91 19.60  
F(000) 392 396 404  
Collected reflections 8100 15784 4383  
Unique data 730 422  785  
Data [I > 2σ(I)] 730 410 785  
Rint 0.037 0.036 0.036  
GOF (F2) 1.06 1.19 1.18  
R1

a) [I > 2σ(I)] 0.015 0.010 0.016  
wR2

b) [I > 2σ(I)] 0.027 0.022 0.033  
Δρmax /Δρmin /e Å−3 0.89, −0.96 0.44, −0.53 0.99, −1.06  

 4Eu 5Gd 6Tb 7Dy 

Temperature /K 296(2) 296(2) 296(2) 296(2) 
Colour/Habit Colorless /plate Colorless /plate Colorless /plate Colorless /plate 
Crystal size (mm) 0.08 × 0.10 × 0.14 0.10 × 0.18 × 0.22 0.08 × 0.12 × 0.16 0.06 × 0.06 × 0.08 
Crystal system Orthorhombic Orthorhombic Orthorhombic Orthorhombic 
Space group Pnma Pnma Pnma Pnma 
a /Å 7.1000(5) 7.0704(8) 7.0261(1) 6.9866(3) 
b /Å 4.8927(3) 4.8692(6) 4.8578(1) 4.8342(2) 
c /Å 8.4473(6) 8.4375(10) 8.4622(2) 8.4527(4) 
V /Å3 293.44(3) 290.48(6) 288.83(1) 285.49(2) 

a) R1 = ∑||Fo|–|Fc||/∑|Fo|. b) wR2 = [∑w(|Fo
2|–|Fc

2|)2/∑w(|Fo
2|)2]1/2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1  Comparison of the experimental powder XRD patterns of all compounds with the results simulated on the basis of 
the single-crystal structures 
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4.2  Crystal structure description 

Single crystal X-ray diffraction analysis 

reveals that all seven compounds are isostructural 

and isomorphous with the [LnONO3] analogues, i.e. 

Ln
III

 = La (Sun, Kyotani, & Tomita, 1986) and Nd 

(Li, Jin, Li, & Zhang, 2008).  All of the title 

compounds crystallize in the orthorhombic space 

group Pnma (No. 62) with four formula units per 

unit cell and feature neutral 3D frameworks.  The 

asymmetric unit contains half Ln
III

 ion, half CO3
2−

 

anion and half OH
−
 anion, each of which lie on a 

crystallographic mirror plane.  As shown in Figure 2, 

the Ln
III

 ion is ten-coordinated with eight oxygen 

atoms from five CO3
2− 

molecules and two oxygen 

atoms from two OH
−
 group in an irregular {LnO10} 

coordination geometry.  The Ln−Ocarbonate bond 

lengths in the title compounds are longer than the 

corresponding Ln−Ohydroxide bond lengths, Table 2, 

which corresponds to previous reports (Chesman et 

al., 2012).  As illustrated in Figure 3, due to the 

effect of the lanthanide contraction, the unit cell 

volumes decrease consecutively with increasing 

lanthanide atomic numbers from 1Pr to 7Dy. These 

trends are similar to those found in lanthanide 

coordination polymers containing carbonate groups 

and oxygen donor ligands (Xu et al., 2013; Yan et 

al., 2011). 

 

 

 

  (a)          (b) 

Figure 2  The coordination environment (a) and polyhedron of LnIII ion in the title compounds. Symmetry codes: (i) x, 
0.5‒ y, z; (ii) x, 1+y, z; (iii) ‒ 0.5‒ x, 0.5+y, 0.5+z; (iv) 0.5+x, 1+y, 1.5‒ z; (v) 0.5+x, 0.5‒ y, 1.5‒ z; (vi) ‒ 0.5+x, 1.5‒ y, 
1.5‒ z 

 
Figure 3  The dependence of the unit cell volume V (Å3) on the atomic number Z of the lanthanide in the title compounds
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Table 2 Selected bond lengths (Å) for compounds 1Pr-3Sm 

 1Pr 2Nd 3Sm 

Ln1−O1 2.364(2) 2.356(2) 2.315(2) 
Ln1−O1i 2.366(2) 2.346(2) 2.323(2) 
Ln1−O2ii 2.547(4) 2.532(6) 2.512(6) 
Ln1−O3iii 2.756(1) 2.745(2) 2.747(2) 
Ln1−O3iv 2.635(2) 2.617(2) 2.587(2) 
Ln1−O3v 2.599(1) 2.580(1) 2.542(2) 

Symmetry codes: (i) ‒ 0.5 + x, 1.5 ‒  y, 1.5 ‒  z; (ii) x, 1 + y, z; (iii) x, 0.5 ‒  y, z; (iv) ‒ 0.5 ‒  x, 0.5 + y, 0.5 + z; (v) 0.5 + x, 1 
+ y, 1.5 ‒  z 

 

Coordination modes of the CO3
2− 

and OH
−
 

groups found in the title compounds 1Pr-3Sm are 

shown in Figure 4.  The most striking structural 

feature is that the CO3
2− 

anion exhibits a μ5-

η
2
:η

2
:η

2
:η

1
:η

1
 coordination mode.  Namely, the CO3

2−
 

group coordinates to five Ln
III

 atoms {μ5}.  Three of 

these Ln
III

 ions are connected to two oxygen atoms 

of the CO3
2−

 group {η
2
(O2,O3):η

2
(O2,O3'): 

η
2
(O3,O3')} and the remaining two Ln

III
 ions are 

connected one oxygen atom of the CO3
2−

 group 

(η
1
(O2):η

1
(O3')).  On the other hand, the OH

−
 

bridging mode present in the title compounds 1Pr-

3Sm is quite common.  The hydroxide binds in a μ2-

coordination mode connecting two adjacent Ln
III

 

ions.  As a result, an overall neutral 3D framework 

structure is achieved as shown in Figure 5.  The 

Ln
III

∙∙∙Ln
III

 distances bound through the carbonate 

and hydroxide bridging anions for compounds 1Pr-

3Sm are listed in Table 3.  These distances steadily 

decrease from Pr
III

 to Sm
III

 following the lanthanide 

contraction. 

 

 

            (a)                     (b) 

 

Figure 4  Coordination modes of CO3
2‒  (a) and OH‒  (b) observed in the title compounds 1Pr-3Sm 

 

 

Figure 5  Prospective view of the 3D framework of the title compounds 1Pr-3Sm running approximately along the a axis 
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Table 4  The LnIII∙∙∙LnIII distances bound through the carbonate and hydroxide bridging anions for compounds 1Pr-7Dy 

 1Pr 2Nd 3Sm 

Hydroxide bridged    
Ln···Lni 3.9009(2) 3.8799(2) 3.8433(2) 
Carbonate bridged    
Ln···Lnii 4.3234(2) 4.2960(2) 4.2385(2) 
Ln···Lniii 4.9866(2) 4.9582(2) 4.9154(2) 
Ln···Lniv 5.1678(2) 5.1433(2) 5.1310(2) 

Symmetry codes: (i) ‒ 0.5 + x, 1.5 ‒  y, 1.5 ‒  z; (ii) ‒ x, 0.5 + y, 2 ‒  z; (iii) 0.5 ‒  x, 1 ‒  y, 0.5 + z; (iv) x, 1 + y, z 

4.3  Luminescent properties 

The luminescent properties and the 

emission lifetimes of compounds 4Eu and 6Tb were 

investigated in solid state at room temperature, and 

are shown in Figure 6.  The emission spectra of the 

two compounds were obtained with excitation at 330 

nm for 4Eu and 247 nm for 6Tb.  The spectra 

exhibit the characteristic emission peaks of Eu
III

 and 

Tb
III

 based on the f‒ f transitions in these species 

(Sivakumar, Reddy, Cowley, & Butorac, 2011; Li et 

al., 2010; Lu, Jiang, & Lu, 2010; Wang et al., 2009).  

Compound 4Eu exhibits four characteristic peaks at 

588, 614, 659 and 687 nm, respectively, 

corresponding to the transitions from 
5
D0 → 

7
FJ (J = 

1, 2, 3, 4).  Among these transitions, 
5
D0 → 

7
F2 (614 

nm) is the strongest, which implies that the emitted 

light is red (Xu et al., 2013).  Compound 6Tb also 

shows four emission peaks at 487, 541, 583 and 618 

nm, which correspond to the characteristic 
5
D4 → 

7
FJ 

(J = 6, 5, 4, 3).  The most intense green emission 
5
D4 

→ 
7
F5 (541 nm) was observed in the spectra (Calvez, 

et al., 2011).  The emission decay lifetimes of 4Eu at 

614 nm (
5
D0 → 

7
F2) and 6Tb at 541 nm (

5
D4 → 

7
F6) 

are 1.37 and 0.26 ms, respectively. 

 

 

   (a)      (b) 

   (c)      (d) 

Figure 6  Room temperature solid state photoluminescence spectra of 4Eu excited at 361 nm (a) 6Tb excited at 366 nm (b) 
and the emission intensity decays of 4Eu (c) and 6Tb (d) 
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5.  Conclusion 

In summary, a series of seven 3D lanthanide 

coordination polymers based on carbonate and 

hydroxide has been successfully synthesized by 

solvothermal reactions and structural characterized 

by spectroscopic methods. In crystal structure, the 

CO3
2−

 adopts the interesting μ5-η
2
:η

2
:η

2
:η

1
:η

1
 

coordination mode. Compounds 4Eu and 6Tb emit 

intense red and green luminescence in the visible 

region, which may make these compounds good 

candidates for red- or green-light emitting diode 

devices. 
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