
Journal of Current Science and Technology, May-August 2021 Vol. 11 No. 2, pp. 240-260

Copyright ©2018-2021, Rangsit University ISSN 2630-0656 (Online)

Cite this article: Rukhiran, M., Netinant, P., & Elrad, T. (2021, May). Multiconcerns circuit component diagram

apply to improve on software development: Empirical study of house bookkeeping mobile software. Journal of

Current Science and Technology, 11(2), 240-260. DOI: 10.14456/jcst.2021.25

Multiconcerns circuit component diagram apply to improve on software development:
Empirical study of house bookkeeping mobile software

Meennapa Rukhiran1, Paniti Netinant2,*, and Tzilla Elrad3

1Department of Social Technology, Ragamangala University of Technology Tawan-OK, Chanthaburi 22210, Thailand
2College of Digital Innovation Technology, Rangsit University, Bangkok 12000, Thailand

3Concurrent Programming Research Group, Illinois Institute of Technology, IL, Chicago, 60616, USA
1Email: meennapa_ru@rmutto.ac.th; 2,3Email: paniti.n@rsu.ac.th; 3Email: elrad@iit.edu

*Corresponding author; paniti.n@rsu.ac.th

Received 10 January 2021; Revised 10 April 2021; Accepted 29 April 2021;

Published online 27 May 2021

__

Abstract
Developing component-based software is a demanding profession for software engineers. Developing

component-based software is more complicated and needs more skills to meet software qualities, especially for mobile
software design and development. Not only does mobile software have many platforms, but also a separation of
concerns is required in the primary design and development, making the final component software very satisfying and
comfortable to use the application. Since many prototypes have been redesigned and developed in a software life cycle,
a prototype must undergo many components with multilayered and prime to duplicate components. The redundant
components maybe failed to support the effective reuse because the components are contained several details and
specifics. The house bookkeeping software can be decomposed into many components. The interaction and overlap of
components are influenced by behaviors and classes. The limits in collaborations of reusable components can be found.
In this paper, the multiconcerns circuit component diagram is originally proposed to express the development of
component-based software, especially decreasing interactions of resemblance components. This technique uses a
software component reduction between interactions of inter analogous inputs and outputs components, reducing a few
redundant information, complex interactions, and tangling components. The result of the development makes software
engineers better comprehend the design and implementation of component-based software proficiently. The empirical
study of the house bookkeeping mobile software has shown an improvement of a component reduction in the final
prototype of 26.47 percent over the previous technique using only an information flow diagram.

Keywords: multiconcerns; circuit component; diagram; layering; software development; mobile software

__

1. Introduction
Many researchers have approached a

separation of concerns as a software adaptation to
improve software quality attributes of a software
design and development such as modularity,
compensability, and reusability. The separation of
concerns is to design the individual matter to
support programming (Sommerville, 2014), such
as class, method, procedure, etc. The separating
concerns deliver the principal designing and
programming paradigms of an aspect-oriented
approach using weaving instead of calling the
functionalities directly. The approach enhances a

more reusable, extensile, and adaptable system
(Diaz, Romero, Rubio, Soler, & Troya, 2005;
Pinciroli, Justo, & Forradellas, 2020). The
modularization is improved by generating new
constructions for the encapsulation of crosscutting
concerns into single modules named aspects and
composing the crosscutting concerns together
named weaver (Muck, & Frohlich, 2014).

Software engineers can rapidly change
among frameworks, behaviors, interfaces, and
platforms for upgrade and maintenance with
different techniques. Component-based software
(Tibermacine, Sadou, Dony, & Fabresse, 2011)

mailto:meennapa_ru@rmutto.ac.th
mailto:elrad@iit.edu

RJAS Research Article Template

241

introduces a construction of software and concept
reuses. The purpose of a component provides
standalone services that design a specific
architectural style. The component-based approach
of software developments focuses on software
requirements, architectures, designs, verification,
formations, and distributions (Buhnova, et al
2014). The researches and development of
component-based systems have been focused on
many areas. Verma (2002) compares component-
based software engineering with traditional
software engineering and represents the benefit of
reducing cost, decreasing development time,
increasing term quality control (characteristic,
performance, reliability, and usability), and
increasing applicability of functional theories.
Many researchers have designed component-based
software supporting object-oriented development
on web applications (Okewu, & Daramola, 2014)
and mobile applications (Giedrimas, & Omanovic,
2015). A component provides core functionalities
that can be implemented by coding and
programming for several system requirements and
user's requirements.

Moreover, components are designed for

software development as architecture constraints

that any features can parameterize. The business

components are possible to support more complex

or higher levels of software constraints. However,

traditional software engineering, like the object-

oriented approach, cannot reuse components

significantly (Sommerville, 2014) and does not

improve the system's internal design. The object

orientation may fail to support the effective reuse

because the single class contains several details

and specifics. Behaviors and classes influence the

interaction and overlap. Developers can find the

limits in collaborations of reusable classes. An

example of software solutions and aspect-oriented

framework on the component-based software is

proposed by Lee and Bae (2004). The technique

has merged the reuse solution supporting

separation of concerns on non-functional aspects

(inter-component non-functionality). The

component-based software enables the promotion

of the reusability of components and connectors

(Panunzio, & Vardanega, 2014).
Our recent works are designed for

housekeeping software based on three dimensions

of layering (Rukhiran, & Netinant, 2020a). The

layering is separated relatively among datasets.

The layers consist of concerns (income,

expenditure, and liability) linking the X, Y, and Z

axis coordinate. The functional data combination is

from the three-dimensional layering of datasets

that information can perform between layers. We

have first applied the principles of Aspect-

Oriented Software Development (AOSD) to

separate the software's functions explicitly. The

aspect elements are the minor functions that are

engaged from crosscutting other concerns in a core

system. By crosscutting concerns, the aspect

element must not comprise during producer

processes, and the developing software becomes

scattered (duplication) and tangled (dependency)

(Kumar, Kumar, & Iyyappan, 2016; Pinciroli,

Justo, & Forradellas, 2020). The aspect elements

have been excluded from the functional data. The

execution design of an aspect-oriented approach

through a weaver is proposed. One solution of our

recent samples is a transfer component on the

liability payment that can reduce the total of the

liability data, decrease the income data by weaving

on three layers (day, month, and year) and raise the

expenditure data. A multilayered approach is

provided for adapting a variety of crosscutting

concerns. However, the design and implementation

studies have not been completely designed yet.

The previous research proposed Information Flow

Diagram (IFD) with the Rapid Application

Development (RAD) methodology (Chomngern, &

Netinant, 2017; Rukhiran, & Netinant, 2020b).

In addition, software development was

lack of the practical consequence of successful

user capabilities in the deployment. The final

software could guarantee to be misappropriated for

users. In this research, we present the concept of a

dimensional hyperspace through the functional

data, describe the types of aspect elements, and

design the execution flow diagram, which is one of

the main concerns in the system usage level from

the functionalities abilities of the house

bookkeeping software. To state the important

diagram, we also propose a Multiconcerns Circuit

Component Diagram (MCCD) of component-

based software. The MCCD is the ease of use by

dividing the functional patterns of contracts (sets

of data in layering and separating concerns) and

connecting components from inputs and outputs. A

concern circuit is a pattern of structures using a

principle design of a circuit that characterizes a

logical relation of component-based software in

the development. Our proposal aims to design the

execution flow of the component and the

concerned circuit and prove the execution through

the vertical and horizontal layering in the

implementation phase. We have proposed the

conceptual framework design of the MCCD

RJAS Research Article Template

242

diagram in the case study of the house

bookkeeping software design. By demonstrating

the empirical components, the concept of the

MCCD can be applied adaptably competent in

application software designs.

2. Objectives and research questions

This research's main objectives are

primarily to design and implement component-

based software like a house bookkeeping mobile

application for users' diverse technological skills

and suitably better deliver the final software

product of the house bookkeeping mobile

application. The succeeding research questions are

defined to comprehend the objectives.

RQ1: This is the technique to aid the

design and implementation of component software

to support the Information Flow Diagram. Is the

technique suitable for developing component-

based software development like a house

bookkeeping mobile application?

RQ2: How can Multiconcerns Circuit

Diagram better comprehend the design and

implementation of component-based software

efficiently?

According to an agile software

development system named RAD (Rapid

Application Development), the model arranges

rapid prototype releases based on users' iterations

and satisfactions. However, the designers and

developers cannot promise the final product met

better design and deployments of variability

component-based software. The first research

question aims to study a better solution during the

plan, design, and development phases. The MCCD

methodology can agreeably express the whole

system components and layers of component

interactions with the support of multiconcerns. The

second research question is to evidence the better

design and development of component-based

software development. Our final production of the

house bookkeeping mobile application has used

this methodology in the deployment.

3. Literature review

The research study establishes software

design and development using circuit component

design of the house bookkeeping mobile software.

Accordingly, many studies have been provided in

this research review.

3.1 Separation of concerns

 Separation of concerns is defined as a

critical principle of software designs and

implementations. A concern is divided as a part of

the software that represents a single functionality.

The aspect-orientation is an approach to handling

the separation of concern through new abstractions

and composition mechanisms (Muck, & Frohlich,

2014). The design principle of aspect orientation

software is to augment crosscutting concerns'

modularization (Tanter, Figueroa, & Tabaerau,

2014; AI-Hudhud, 2015). The concerns can be

called by the components depending on a weaver.

Weaving is a process of systematizing aspects and

other elements (Zhang, Khedri, & Jaskolka, 2012;

Lindstrom, Offutt, Sundmark, Andler, &

Pettersson, 2017). The evolution strategies of

aspect-oriented software focus on defining the four

rules by explaining the event, condition, and action

for supporting the changing of computation

environment (Zhang, & Rong, 2009). The dynamic

evolution is concerned with a running time. The

first rule is an addition of a base component. The

second rule is an addition of an aspect component.

The third rule is an addition of an aspect

connector. The fourth rule is the addition of

attachments. Therefore, the separation of concerns

can result in reusable, extensile, and adaptable

systems.

3.2 Component-based software

Component-based software is defined as

an architecture constraint to validate the specific

architectural elements (components) (Tibermacine,

Sadou, Dony, & Fabresse, 2011). A study of

aspect-oriented software architectures for code

mobility is composed of components (Lobato,

Garcia, Romanovsky, & Lucena, 2008) and

aspects. The aspect is represented using the

symbol of a diamond shape, and the crosscutting

interface is displayed using a small grey circle

with its name placed over the circle. The

separation of concerns can solve the fine-grained

problem. The architecture becomes a clean

modularization, an explicit introduction, and an

improving variability of programming with

flexible incorporation of code mobility. To prove

the consistency of components, a system's intra-

component dependency models enable a

determination of the dynamic adaptation (Sadeghi,

Esfahani, & Malek, 2017). Hoffman and Eugster

(2008) mention that aspects' ability is the

RJAS Research Article Template

243

separation of concerns, and the modularization is

transformed into reusable components. Creating

explicit modeling crosscutting concerns and an

appropriate aspect-oriented technique can achieve

the semantic separation of concerns. Design aims

are to reduce coupling and decrease cohesion by

counting the number of modules explicitly named

point cut. The pointcut is defined as a state of

selecting the specific joint points. Component-

based development (CBD) has been designed for

supporting the encapsulation of collaborative

behaviors crossing multiple components through

the explicit architectural element. The connector

enables to contain and reveal gross structures and

global control flows, including the entire system's

behaviors such as design decisions, collaborative

protocols, and functions incorporated into the non-

functional aspects using connectors (Lee, & Bae,

2004).

3.3 Early stage of our house bookkeeping

software design approach through Aspect-Oriented

Approach (AOA)

Our recent Aspect-Oriented Software

Development (AOSD) is designed for supporting

the house bookkeeping software by separating the

functional data and the aspect elements. In our

recent work, we have proposed the functional data

through a three-dimensional layering to present the

relationships between sets of data and dimensions.

There are three dimensions (incomes,

expenditures, and liabilities) dividing from a series

of data concerns. Each dimension is categorized

into smaller datasets shown in our latest work

(Rukhiran, & Netinant, 2020a). The functional

data initially recorded from one field to n fields in

table names. The aspect elements define as a set of

computational properties (e.g., insert, update,

delete, day, month, year, and sum) which starts

corporately more than one aspect to m aspects. An

object executes calling the aspect elements and the

functional data using crosscutting concern in an

upper level. We assume a weaver to call the object

for the final execution by using the functional

formula n x m for crosscutting concerns, as shown

in Figure 1. Weaving is the process of

transforming to solve scattered solutions and avoid

tangled methodology.

 Functional Data Aspect Elements

Figure 1 Execution design of aspect-oriented approach

A glass of iced black coffee (Americano)

can explain the execution of AODA. Coffee is a

functional data, and a cube of ice is an aspect.

Hence, a glass contains many cubes of ice like our

design. We separate the computational

functionalities into a single methodology. Our

weaving process performs a transformation of

crosscutting by advising at running time logics.

The dynamic transition of aspects is a process that

can return a calling operation to the object without

any effect at a compiling time and a running time.

On the other hand, a blending coffee is a

mixture of ingredients that we cannot get any ice

like an Object-Oriented Design Approach

(OODA). OODA focuses on representing

problems using objects and their behavior. An

OODA implementation leads to code scattering

and code tangling (Gupta, Singh, & Kumar, 2016),

while AODA deals with breaking down the

methodologies using the separation of crosscutting

concerns. AODA also leads to an increase in the

modularity of components and reusability of

aspects.

 1 … n 1 … m

 Table

Name

 Method

Object

(Transaction)

m x n
 Weaver

RJAS Research Article Template

244

Figure 2(a) Comparison of AODA using black coffee Figure 2(b) Comparison of OODA using blend coffee

3.4 Adaptability of the framework in software

design

 The principal key to achieving

adaptability in software design is compatibility and

interoperability. These elements are necessary for

a rapidly changing environment. The adaptive

application in QoS (Quality of Service) is to

interact with the implementation of changing

resource conditions (Witana, Fry, & Antoniades,

1999). Software services need to be adaptable and

aware of the contexts for experiencing the best

QoS. Self-contained adaptable applications

provide naturally dynamic adaptability in the

environment by reacting at a running time. The

formal model is to specify the characteristics with

aspects of applications and environments managed

by a framework. The framework for context-

aware, adaptable software applications and

services is conducted by Benedetto (2011). The

user's QoS requests on an an-hoc client

application. The adaptable application

development is carried out as a routine engineering

activity, and it brings an independent evolution

from the other tasks. The strategy designing

pattern, specialization classes, adaptation classes,

and Objective-C categories specification are

produced to QoS approach. Kebir (2012) has

proposed a combining approach called JACAC

basing on aspects and components to enable the

autonomic capabilities in the self-adaptive

software system. Dynamic reconfiguration is one

of the solutions that a framework can implement

through an object orientation. The new component

basing on a software system can be applied when

the new services or functionalities are replaced and

adapted in either the functional or non-functional

dimension. An extensible framework is

implemented for identifying the aspect-oriented

refactoring opportunities on an extractor. The

architecture consists of layers to support the

refactoring of the extensions and the interaction

with users through a pluggable architecture

(Boukraa, Boussaid, Bentayeb, & Zegour, 2013).

4. Our house bookkeeping software framework

design

 According to our early execution design

of house bookkeeping software in Figure 1, two

main fundamental concerns are separated using

aspect orientation: aspect elements and three-

dimensional layering called functional data. The

object can use the composition of these two main

concerns. In this practical programming, the object

is known as the component. The component is

software constraints called aspect elements and

functional data to execute in a compiling time.

Application software may consist of many

components. In this section, we have divided our

separation of software concerns into four sections.

Section 4.1 clearly understands aspect elements of

house bookkeeping software design and how it

works with components. Section 4.2 delivers a

basic crosscutting concept of three-dimensional

layering and aspect element layering through a

hyperspace design. Section 4.3 presents our early

designs of the component-based approach. Section

4.4 offers an adaption of our multiconcerns circuit

component diagram. The multiconcerns circuit

component is an extension series of our

components from section 3.

4.1 Principles of aspect elements

4.1.1 Aspect element declaration

For designing software, functional and

non-functional requirements decompose the

functionality of a system. The functionality can

support many components' encapsulation, and each

component may require many objects to

collaborate in an operation. An object's explicit

design is separated from the functional data and

the aspect elements in our design. In this context,

we only provide the functional aspect named

aspect element. The definition of the aspect

element is a set of crosscutting properties that

Aspect

Aspect

RJAS Research Article Template

245

tangles in the system's functionalities or

methodologies. For instance, the aspect elements

in house bookkeeping software design, the

thirteenth functionalities of the aspect elements are

designed separately in Figure 3. Some more

aspects are presenting in the following sections.

The aspectual properties are excluded from the

functional data.

4.1.2 Type of aspect element and how it works

 By defining each aspect's functionality,

we have fundamentally realized that the

framework can declare the aspects into two

different types. Each aspect has well-defined roles

as follows:

 1. Individual aspects: The individual

aspects work once when the object is called.

However, there is more than one aspect that can be

called to execute at the joining point.

 Insert: The insert aspect is called
when the transaction has requested to insert data.

The object or the transaction will call the insert

function once, simultaneously, and the object also

calls the functional data. The execution depends on

the object that is called on.

Figure 3 Aspect elements of house bookkeeping software design

 Delete: The delete aspect is called
by the object when the weaver is requested.

The execution works completely when the

functional data is also called to send the correct

concern. The delete function will be accomplished

when the object receives the transaction from the

aspects and the functional data.

 Update: The update aspect is

called when the weaver is reached through the

display component. The object will request the

aspects and functional data that depend on the

requesting object's purpose. In Figure 4, the

transaction containing the update aspect and other

aspects, such as a type, a location, and a photo. We

assume the first transaction of crosscutting

between aspects as t1. The object is assigning as a

weaver of t1 support many crosscutting points.

Figure 4 Execution of update function of income

 Notify: the notify aspect can be

requested when the due date of a payment is set up

for reminding.

 Location: The location aspect
relating to the space stamp is assigned as a

function of the current location of spending or

receiving money. The location function cannot be

called individually. It needs to be requested

through the other aspects like an insert, an update,

and a delete aspect.

 Photo: the picture aspect is an

optional function that can be called to request

proof of payment. The advice works as an analyser

to identify the aspects that a photo can select.

 2. Persevere aspects: an arithmetic

sequence can explain the continuous calls of

aspects. We assign the first transaction of the

sequence as t1. N is a number of transactions. Tn

is the term of the last transaction. Therefore, the

formulation of the persevere aspects can be given

by t1 to tn where n ≥ 1. For every sort of a

Insert Delete

Update

Year Week

Month Type

Location

Date

Photo

Total

Time

Day
…

…

Update

Location

Photo

Object
(weaver) Functional Data

A set of incomes
⋯ t1

Type

RJAS Research Article Template

246

countable infinite is {t1, t2, t3, …, tn}. Each

transaction can be called at the same time. It

depends on the requests from the object.

 Date: The dating aspect is called
when the transaction is requested. Weaver can

reach the aspects directly. For example, a tracking

operation (a component) of a financial statement is

asked for through the object from a display

operation (a component) by combining the date 1

to date 5 of the recordings. The object will call on

the functional data to request displaying three-

dimensional layering (incomes, expenditures, and

liabilities). The date aspects are also asked by

calling the 1st date to the 5th date, as shown in

Figure 5.

 Week: The week aspect is called

by specifying the week function. A transaction can

work the execution collecting a transaction

through the object for seven days. This design is

suitable for calculating an account's total and

displaying its data using a scheduled task.

 Month: The month aspect is the
function of calling the transaction for a month. The

aspect has a concept design like the week aspect.

Collecting different concerns can reach each

aspect that depends on the functional data.

 Year: The year aspect also has the

same purpose as the date and week aspect, but the

execution can be called covering an amount of

dataset in a year.

 Time: The object calls the time
aspect. The function can return the time value.

 Type: The type aspect is specially

designed to support the categories of the functional

data. The aspect can be called corporately to reach

different types of datasets.

 Sum: The sum aspect is a function
for calculating several transactions. In Figure 5,

more than one aspect can contain a transaction.

Each aspect is identified using a number as series

to summarize the final result.

Figure 5 Execution of date aspect

Both individual and persevere aspects can

be called cooperatively in an execution. The

operation of inserting an expenditure account

works through the object. There are many aspects

(e.g., insert, date 1, time 1, location, and …) and

an expenditure concern (a concern in the

functional data) called by the object. Moreover, the

optional process can work causally by inserting a

notification to remind regular incomes and

payments. The object also calls date and time

aspects that can be set up for a scheduled

notification, as shown in Figure 6. Then the object

will call the weaver for execution at a running

time.

t1

Object

Sum 2

Date 2

Sum 1

t1

t2 Functional Data
a set of concerns

⋯

Sum 5

Date 5

t5

Type 1

Type 2

Type 5

Date 1

RJAS Research Article Template

247

Figure 6 Execution of insert function of expenditure

The overview execution of separating

concerns is illustrated in Figure 1, and the

composition of using the aspect elements and the

functional data by an object has represented in this

section. However, the explanation does not include

how an object works with another object. In our

design, we assign the object a component that can

be defined to manipulate the functional data and

the aspect elements. Therefore, many components

should provide regarding the principle design of

the separation of concerns. The components of the

framework will present in the next section.

4.2 Crosscutting concept of hyperspace design

Crosscutting point is required to execute

the functional data and the aspects using

intersections of a single crosscutting point. Each

dimension cuts across a single element aspectual

property to implement relatively because of

crosscutting concerns shown in Figure 7.

Figure 7 Hyperspace design of functional data crosscuts aspect elements

The separation of concerns is able to be

potentially used crosscutting the different

requirements. The process integrates the functional

data and the crosscutting concerns called weaving.

When a transaction is reached, the object

associated with a method call will analyze the

transaction. The different invocation of this

methodology is presented dynamically and

flexibly. It depends on the aspects as well as the

functional data that are invoked in the execution.

The functional data is independently used and

represented the dimensions that are associated with

Insert

Location

Photo Object Functional Data

A set of

expenditures

Date 1

Time 1

Notify

Date 2

Time 2

an option
of reminding

t1

Incomes

Liabilities

Expenditures

Insert Delete ⋯ Date Dimension of concerns

⋯

Join Point:

Crosscutting

Point

Hyperspace:

The set of
dimensions

Earn Income

⋯

Passive Income

 Total Aspect concerns

RJAS Research Article Template

248

a method call. The weaver can affect the different

datasets from the dimensions. The aspect can be

called depending on the execution at that time. The

three dimensions present a set of dimensions in a

hyperspace approach. The hyperspace approach

defines a space of the multi-dimensional matrix by

containing a specific concern of a dimension. The

hyperspace of this design is a concerned space in

the three-dimensional design that adapts the multi-

aspect. A concern space consists of a set of

concerns and components. For example, a one-

dimensional layering may require for getting

datasets from an axis. An x-axis consists of

datasets from an expenditure concern, a y-axis

only presents datasets from an income aspect, and

z-axis is datasets from a liability concern. Two-

dimensional layering shows the relationship

between two axes by combining two layers. The

ability of the hyperspace in our design achieves the

dynamic effects. Moreover, a new concern and

multi-dimensional dataset can be incrementally

proposed (Khanzadi, Shahbazi1, Arashpour,

Ghosh, & 2019).

4.3 Component-based approach of house

bookkeeping software

4.3.1 Software requirements

The development of house bookkeeping

software at the system level is constructed to cover

a personal finance performance. The scope of the

software should be focused on functionalities and

abilities as follow:

1. Set up for the first usage, such as

selecting recording accounts of income,

expenditure, or/and liability and manipulating the

categories of each recording and the risk condition

of financial statements. For example, the function

will notify when the amount of expenditures and

liabilities is more significant than income.

2. Record transactions of an income,

expenditure, and liability daily by categorizing the

separation of concerns. Smaller categories are

dividing from sub-dimension. The software also

supports using infographics of each item.

3. Adapt a financial statement for the

day, week, and month using aspect elements'

concept design.

4. Track for inputting everyday

transactions and payments automatically. For

example, a user may set the notification to record

an amount of money to spend on lunch.

5. Notify for a chronological

payment date and a user configuration of financial

finance. For example, the system will notify the

payment due date monthly of a credit card.

6. Manage liabilities by transferring a

recording of a liability dataset to an expenditure

dataset and reducing an income dataset. For

example, a user makes a payment of a credit card.

The user also has to record the payment, and the

software will transfer a transaction by increasing

the amount of expenditure and decreasing the

amount of income.

7. Backup data for synchronizing

files to a local database and cloud computing, such

as uploading the dataset transactions.

Figure 8 Execution flow diagram of house bookkeeping components

Setup Schedule Display

Account Search Track

Agent (Alert)

Components of the Framework

Transaction

Type

Timestamps

Space stamp

Picture

Date Alert

…

An Input Information

RJAS Research Article Template

249

4.3.2 Software component-based declaration and
execution

Figure 8 shows that the framework's

component is a component-based process of the

execution flow in a running time. The component

represents the software-defined steps that

emphasized the design phase for constructing

software in the implementation phase. The

transaction flow diagram can use independently

for the development of application software in any

platform language. There are seven components

(setup, account, search, schedule, track, display,

and agent intelligent) described in the execution

flow diagram. The components provide the

structural sequences of an operation to control the

execution and achieve the systematic reuse

component. The input information on the left-hand

side in Figure 9 contains the samples of data

recordings transferred into the execution

component flow. The input information consists of

many data recordings. For example, a transaction

is an amount of money, a type is a category of

funds that is separated as the functional data, a

timestamp is a sequence of characters of a specific

event (e.g., date and time literals), a space stamp is

an indicating particular location and the data of the

location can be used Global Positioning System

(GPS) coordinates to track the current location

easily, a photo is a proof of payment that it can be

related to the details of payment, and a date alert is

a service to remind the payment for due date alert.

The input information can make a different effect

to support in a finite state machine. We have

designed the execution sequences between the

components in Table 1.

Table 1 Samples of processes between components

State Functionality of

components

Description

Setup Display The software provides the first configuration, which contains user information,
record domains, and risk conditions for a notification system. The event is to

execute by transiting user configurations to the state of the account component.
Account Search

Display

The state supports inputting transactions into an appropriate type for keeping data

and transactions by separating data types and checking for an existing record.

Account Search

Track Display

The tracking state is executed corporately with the searching component. A

dynamic search of data recordings is activated using the day aspect, the week

aspect, the month aspect, and the year aspect to display finance reports. The
software provides tracking adaptively on different timing and dynamic datasets in

the three-dimensional layering.
Account Schedule
Display

A financial statement is monitored by planning due payments and usual spending
and receiving money. The schedule component approaches a database to query a

due date for reminding payments and send a push notification for alerting a user to

record a usual transaction.

Account Agent

Track Display

The agent component is a future stage of gathering data from databases kept

recording by the account component. The application of data mining techniques
and algorithms should use to analyze and forecast for improved financial

management performance. The different agents (an active agent: keep tracking all

times and a passive agent: execute by requiring or setting an alert on) should be

provided supporting an operating for monitoring data and alerting to an automatic
notification. The tracking component's reminding system should include an ending

and warning for a user's financial risk conditions.

Moreover, the application software is
divided into many components having their states.
The component is a part of the abstract system that
it cannot execute individually. A component is an
architectural element that is assigned as the main
functionality to communicate with other
components. Each component provides its services
(method) separately, but the components are
synchronized to others, depending on the system's
requirements. For a synthetic transaction of the
separation of concerns, more than one component

may require executing corporately to another, and
more than one aspect enables to across in a
component. We have represented the framework
design components for supporting house
bookkeeping software, and the transaction flow
diagram is provided sustaining the execution flow
of components. The weaver cooperates between
components for crosscutting concerns the aspect
element. To propose the conceptual framework
components through the separation of concerns,
we intend to clarify the processes, structures, and

RJAS Research Article Template

250

functions. First of all, the process is defined as a
systematic sequence of actions that control the
flow of data and the operations between the
components providing procedures, status, and
behaviors and tells a developer how the software
works. Secondly, the structure has defined a
boundary of each functional element. Thirdly, the
function is defined as the role of the operations
describing the capabilities of the software. We
represent the circuit components' structures using
the physical connection of circuits to prove the
component-based software. By separating seven-
circuit components, we define the processes,
structures, and functions as follows:

 Setup Component is an initial
component to provide the software configuration

before starting the application usage. We have

designed a circuit design of a circuit to represent a

component circuit shown in Figure 9. The three

types (income, expenditure, and liability

dimensions) of data recordings arrange for a user

to set up a user account. The categories of each

type (subdimension) are available for separating

records. The setup component consists of the

functional data, the aspect elements, and the user

configuration. Based on the user's requirements,

the component can select the types of recording. A

user may not establish a liability recording if

he/she does not have a credit cardholder. After

choosing some subcategory of incomes, a user

may receive money from many sources like a

salary and selling products online. Thus, the user

can create the subcategory of revenues. The final

selection of the notification on the user's financial

statements, such as the user may set up the report

of risk conditions when "an amount of

expenditures is more significant than several

incomes and is less than several liabilities. The

statement can provide the symbol of I < E < L.

Moreover, the user requests can often adapt the

selections. We use the language of set theory to

present the collection of those elements. We let the

event where:

A set of the setup component = { Functional

data, Aspect, Configuration };

The functional data = { Incomes,

Expenditures, Liabilities },

Aspect = { Create, Insert, Type, Save, … },

Configuration = { Type of Records,

Subcategory, Configuring Condition, … }.

 Account Component is a

manipulative stage for supporting insert, delete,

and update statements. It manages the activities of

data inputs and records data. The majors of

recording are income, expenditure, and liability

dimensions. Moreover, a user can setup to remind

a usual record by including another component for

this execution. We let the event where:

A set of the account component = {

Functional data, Aspect, Configuration };

The functional data = { Incomes,

Expenditures, Liabilities },

 Aspect = { Create, Insert, Update, Save,

Delete, … },

 Configuration = { Debit, Credit , …}.

Figure 9 Structure of a setup component

 Search: is a browsing stage by
separating the categories of concerns. It enables

the specific searching to support the different

attributes for displaying the results through a

graphic data report. The component is designed to

support the relational and non-relational databases.

The separating of concerns provides a useful

technique in designing databases and querying

data. We let the event where:

 A set of the search component = {

Functional data, Aspect, Configuration };

The functional data = { Incomes,

Expenditures, Liabilities },

Aspect = {Type, Date, Time, Day, Month,

… },

Configuration = { Select, Where , Group

by, Having, …}.

 Schedule: A stage of arranging is
for reminding of usual recordings and payment

programs. The software must provide an input

process of time reminding, and if the user setups

for scheduling a due date of payments, many

notification techniques should apply.

 A set of the search component = {

Functional data, Aspect, Configuration };

Create

Insert

Type

Save

Setup

Component

Income

Expenditure

Liability

Date Time

Type of records Subcategory

RJAS Research Article Template

251

 The functional data = { Incomes,

Expenditures, Liabilities },

 Aspect = { Date, Time, Total, … },

 Configuration = { System, Email , SMS,

MMS, …}.

 Tracking: A stage of reporting a
use financial statement by tracking dynamic data.

For instance, the conceptual design of aspects such

as a day aspect and a week aspect allows users to

track their finances at different timing.

A set of the search component = {

Functional data, Aspect, Configuration };

The functional data = { Incomes,

Expenditures, Liabilities },

Aspect = { Type, Total, Day, Month, Year,

… },

Configuration = { Graph, Number, …}.

 Display: A display component is

the final stage of every component. Graphic User

Interface (GUI) can represent connecting with

other devices like a printer, a monitor, and a voice

(Text to Speech).

 A set of the search component = {

Functional data, Aspect, Configuration };

The functional data = { Incomes,

Expenditures, Liabilities },

Aspect = { Type, Date, Time, Day, Week,

Month, … },

Configuration = { Monitor, Printer,

Speech, …}.

 Agent Intelligence: An agent
component is the stage of an intelligent system. An

innovative housekeeping software is a challenging

key to integrating the advantaged techniques such

as data mining and data scientist to analyze and

forecast trends in personal finance from the

existing data. For example, predicting the most

spending on a month's expenditures and suggesting

a payment of interests and debts to reduce a cost.

The framework is designed to support dynamic

adaptability. For example, in the agent intelligence

component, an existing application can insert

components without any effect at runtime.

4.4 Adaption of multiconcerns circuit component

diagram

We have illustrated the two samples of

the component-based circuits for presenting the

component-based software using circuits' design.

The interconnections between components are

shown by crosscutting of layers. Each component

is generated differently in a multiconcerns circuit

using Interface Abstraction Layer (IAL) to connect

layers. A layer is widely applied to group

architecture patterns in different levels of system

abstractions (Gama, & Donsez, 2011). A higher

layer enables to call services on the neighboring

lower layers with the providing aspects (Netinant,
& Elrad, 2016). LIA is a low-level perspective of

separating multiconcerns circuits that allows

independent concerns and data granularity. The

overall objective of the design is to separate the

multiconcerns circuit from the abstraction layer.

We assume several setup circuits into three

concerns (from one to three numbers): a circuit of

an income dimension, an expenditure dimension,

and a liability dimension, respectively. The setup

circuit's sample design can fulfill specific roles and

practical concepts, as in Figure 10.

In Figure 10, a setup circuit is the first

important state for users' signing up before using a

house bookkeeping application software. The

circuit consists of the functional data (income,

expenditure, and liability), the aspect elements

(day, week, month, and year), and the configuring

conditions for applying financial statements (e.g.,

E < L < I, and I < E < L). Because the analyzing

phase, which is one stage of the Software

Development Life Cycle (SDLC), is based on the

user's requirements and adoption of information

technology to build powerful and efficient

software to support personal finance management

and an economy. For creating an account, a user

must choose record types for managing the

personal account (income, expenditure, and/or

liability recordings) and a notification of the risk

conditions of financial statements. We use the

mathematical symbols: greater than (<) and less

than (>) to compare the money flow. For example,

the user may set up the notification system when

"an amount of expenditures is greater than several

incomes and is less than several liabilities." The

statement can be proved by the symbol of I < E <

L. On the other hand, the designing phase should

provide an account generation's capabilities and

the notification by considering the component that

the action is called and the configuring condition is

stored in a database. Moreover, the functional data

is design using three-dimensional layering to

provide a more loosely coupled software design

and high cohesion. The separation of concerns

handles the reusable software components.

RJAS Research Article Template

252

Figure 10 Execution flow diagram of setup circuit

Layer Interface Abstraction (LIA)

provides a set of multiconcerns circuit
components. A circuit comprises three-
dimensional data and the aspect elements (e.g.,
insert, delete, update, time, date). There are three
numbers of accounting circuits that belong to
different datasets. The data recordings of
accounting circuit numbers one to three are a set of
incomes, a set of expenditures, and liabilities. A
set of data in one dimension on one layer is a set of
incomes (I), expenditures (E), and liability (L).
The component-based circuit does not take place
to be executed respectively. The execution
depending on the method call, is requested
adaptively using a weaver. The formal notation of
one-dimensional = {{I}, {E}, {L}}. For example,
the set of incomes must start from the first record
to n record. We express the set of incomes = (I1,

I2, I3, …, In) on one layer. The formal notation of
one-dimensional = {{I}, {E}, {L}}. A set of data
in two dimensions on one layer is a Cartesian
product of sets. Each set of the dimensions
intersects for all. Thus, there are three formal
notations of two-dimensional = {{ I, E }, {I, L},
{E, L}}. For example, the cross product of I and E
is denoted by I x E. We set I x E = {(i,e) | i ∈ I and
e ∈ E}. A set of data in three dimensions on one
layer is also a Cartesian product of sets. The
formal notation of three-dimensional = {{I, E,
L}}. Consequently, to manipulate more than one
recording of data, we design LIA as a layer to
crosscut among circuits between the functional
data and the aspect elements through the weaver.
The dynamic weaving can integrate adding and
removing between concerns and components at a
compiling time and a running time.

Figure 11 Execution flow diagram of account circuit

E < L < I

I < E < L

I< L < E

…

Setup

Circuit

Layer Interface Abstraction

Income (I)

Expenditure (E)

Liability (L)

Setup

Circuit 1

 I1

 I2

 I3

 In

 Manipulate
 Date

 Time
…

 In

Day Week Month Year

Setup

Circuit 2

 E1

 E2

 E3

 En

 Manipulate
 Date

 Time
…

 In

Setup
Circuit 3

 L1

 L2

 L3

 Ln

 Manipulate

 Date
 Time
…

 In

Debit

Credit

Others

Account

Circuit

Layer Interface Abstraction

Income (I)

Expenditure (E)

Liability (L)

Account
Circuit 1

 I1

 I2

 I3

 In

 Manipulate

 Date
 Time

…

 In

Day Week Month Year

Account
Circuit 2

 E1

 E2

 E3

 En

 Manipulate
 Date
 Time

…

 In

Account
Circuit 3

 L1

 L2

 L3

 Ln

 Manipulate
 Date
 Time

…

 In

RJAS Research Article Template

253

Figure 11 shows another sample of an
account circuit presenting through the functional
data and the aspect elements. It illustrates the
functional relationship of data manipulation (an
insert, an update, a delete) through the
configuration of debit, credit, and others. A debit is
an execution of increasing an amount in the
payable account. A credit is an execution of
increasing a negative amount and decreasing an
amount of money paid from an account. Because
the desired features in the software design should
focus on user behaviors, the others of unknown
and forgotten transactions can exist because a user
may not remember where the money comes from
and spends on. Thus, we name these anonymous
records as others.

5. Evaluation

5.1 Operational semantics of using three-

dimensional layering

A new idea of dimensional layering is

used to describe the sets of data dividing into three

concerns. The data sets' composition can represent

the dataset of house bookkeeping for executing

data in the component-based circuit. The axis

layering is provided three different semantics

containing an income layer, an expenditure layer,

and a liability layer, as shown in Figure 10, 11.

The layer provides the appropriate contextual

information for data manipulation. Each dimension

consists of a set of multilayers such as a y-axis of

an income layering, Income = {I1, I2, I3, …, In},

refers to one layering of sub-dimension which is

divided from user's data categories (e.g., a passive

income and an earn income). There are two types

of quantifiers using to express the formal notations

for computing the functional data from datasets.

The universal quantifier (∀) is for a selection of all

records from a layering. We describe as ∀income,

income > 1. The existential quantifier (∃) is for
some records in the universe. We express as

∃income, income > 1. The quantifiers can also be

used to express through the two-dimensional for

two layerings and more. For example, selecting a

searching component is compared between all

categories of incomes and some categories of

expenditure. We set the sample of two layerings as

∀income U ∃expenditure.
The dataset of an income layering from

one to one horizontal or vertical or oblique line can

take to execute with some aspects through the

weaver. A combination of the functional data is

from a set of data between layers. A

transformation of weaving includes the functional

data and the aspect elements which cut across from

the method call. For instance, the layers of an

income dimension are computed to show several

salary categories in March 2017. The

transformation of weaving must execute through

the functional data of an income layering. The

aspects are the type aspect, the total aspect, the

month aspect, and the year aspect, as shown in

Figure 12 at point number 1 (1). We let the type =

{Incomesalary}, the total = {sum():∑ n}, the month

= {May}, the year = {2017}. We assign a symbol

of crosscutting concern by a weaver is . For

each execution, an amount of salary categories on

March 2017, we compute

∃Income𝑠𝑎𝑙𝑎𝑟𝑦 Total U (Month, Month = May) U (Year, Year = 2017) or

∑ (May U 2017)n
∃incomesalary ∈ Income .

However, at the same point an amount of

salary may show on May 2016, it depends on the
method call of the functional data and the aspects
as at (2). The aspects are composited relatively, but
the same aspect may be showed different

semantics depending on parameters. We let the
type = {Incomesalary}, the total = {sum(): ∑ n}, the
month = {May}, the year = {2016}. By
computing, the statement can be assigned

∃Incomesalary Total U (Month, Month = May) U (Year, Year = 2016).

The formula is expressed using a

composition of two layers, such as a cutting point

from one horizontal and vertical layer to two

layerings, to compute relatively between two

dimensions. For instance, in (3), the financial

statement has computed a balance of incomes and

expenditures from 1st – 15th March 2018. We set

the type = {Income, Expenditure}, the total =

{sum(): ∑ n}, The day = { 1, 2, 3, … , 15}, the
month = {March}, the year = {2018}. We express

RJAS Research Article Template

254

(∃Income Total U (Day, Day = {1,2,3,…,15}) U (Month, Month = March) U (Year, Year = 2018)) U

(∃Expenditure Total U (Day, Day = {1,2,3,…,15}) U (Month, Month = March) U (Year, Year = 2018))

or

(∃Income U ∃Expenditure) Total U (Day, Day = {1,2,3,…,15}) U (Month, Month = March) U (Year,
 Year = 2017))

 The three layerings are designed to

support the computation of three dimensions for

showing an amount of income, expenditures, and

liabilities. In (4), the relation of a cutting point is

called from one horizontal, vertical and oblique

line. Comparing three domains can represent a

balance of incomes, expenditures, and liabilities in

June 2018. We let the type = {Income,

Expenditure, liability}, the total = {sum(): ∑ n},
the month = {June}, the year = {2018}. We

compute

(∃Income Total U (Month, Month = June) U (Year, Year = 2018)) U (∃Expenditure Total U (Month,
Month = June) U (Year, Year = 2018)) U (∃liability Total U (Month, Month = June) U (Year, Year =

2018))
or

(∃Income U ∃Expenditure U ∃Liability) (Total U (Month, Month = June) U (Year, Year = 2018))

Figure 12 Formulation of cutting points on three-dimensional layering

5.2 Circuit component analysis of the application

The house bookkeeping mobile

application has been developed by C# .Net

language on Xamarin cross-platform to deliver

both iOS and Android applications. There are

many functionalities of the house bookkeeping

application. Each functionality has many

components to make it worked. Using the RAD

methodology to develop a prototype for users to

test and verify functionalities, every prototype has

to agree to accept the design and use aesthetic. We

can move on to the next component to ensure that

users are delighted and comfortable using the

application. If users feel unsatisfied and

uncomfortable to use the application, we must

reconsider, redesign, implement, assess, and bring

to users once more for their opinions. The house

bookkeeping application consists of 16 primary

components. Each component has subcomponents,

as illustrated in Table 2. The first prototype

Set of Data: Income

Set of Data: Expenditure

Set of Data: Liability

.

.

.

(1) ∃incomesalary Total U Month, Month = May U Year, Year

 = 2017

(2) ∃incomesalary Total U Month, Month = May U Year,

 Year =2016

(3) (∃Income U ∃Expenditure) Total U (Day,

 Day ={1,2,3,…,15}) U (Month, Month = March)

 U (Year, Year = 2018)

(4) (∃Income U ∃Expenditure U ∃Liability) (Total U

 (Month, Month = June) U (Year, Year = 2018))

RJAS Research Article Template

255

included 156 subcomponents. Each change of the

prototype will have to undergo many components

with the same functionality and system properties

in many components. When anyone changes the

same functionality or a system property was

missing from the other components, this situation

inconsistent information of the component that

may cause errors in the application. Using

Information Flow Diagram (IFD) in the design and

development, we have not confronted any missing

information flows, processes, user interfaces, and

databases. However, we have lost tracking

component interactions, trading information,

redundant functionalities, and system properties,

and been tedious to make changes. Therefore, the

second prototype took so many times to make

changes and deploy the application to users.

 We experienced using the concept of

circuit components to analyze, reconsider,

redesign, implement, correct, and cutover brings

less time of development with the better

comprehend, lesser tightly coupled, and higher

cohesion. The multiconcerns circuit component

diagram divides components into two types of

components: aspectual components and functional

data components. Each component visibly defines

inputs, outputs, layers, and constraints. This

technique leads the developers and designers to

analyze and effortlessly refactor components

improbably. We have found that the third

prototype, using the information flow diagram

with multiconcerns circuit component diagram,

enables to design and develop the application with

fewer components, interactions, information,

processes, and the same functionalities and

properties. In Table 2, we have achieved to reduce

the duplicate components from 156 components to

113 components. Thus, the house bookkeeping

mobile application's final prototype is one-fourth

of the third prototype components, of 26.47%

component reduction.

Table 2 Comparison of components by using IFD without MCCD and IFD with MCCD

Components IFD without

MCCD

IFD with MCCD Component

reduction

%Reduction

Welcome Screens 10 10 0 0

User Registering 5 4 1 20

User Authentication 4 3 1 25

Multilanguage 9 9 0 0

Income Transaction 11 9 2 18.19

Expenses Transactions 11 9 2 18.19

Liability Transaction 11 9 2 18.19

Menu Screens 4 4 0 0

Financial Reports 17 14 3 17.65

Balance Calculation 6 1 5 83.33

Account Management 9 3 6 66.67

Income Categories 12 8 4 33.33

Expenses Categories 12 8 4 33.33

Liability Categories 12 8 4 33.33

Calendar 16 7 9 56.25

User Profile 7 7 7 0

Total 156 113 50 26.47

 In Figure 13, we demonstrated the

number of components in the house bookkeeping

mobile application using an information flow

diagram without a multiconcerns circuit diagram

and the number of components in the ultimate

RJAS Research Article Template

256

house bookkeeping mobile application using an

information flow multiconcerns circuit diagram.

 The components of the house

bookkeeping software design described in this

paper have been proposed using a circuit's

structures. Although the circuit is rarely applied to

define a property of components, the software

building block seems to contain input and an

output that can be useful to interconnect several

entities and describe supporting the separation of

concerns. The advantage of input and output

characteristics is to identify clearly between

aspects and functional data during a weaving

execution. We assign that inputs are composed of

datasets, functional data, aspect elements,

configurations, and outputs collected by

crosscutting a method call. The various concerns

and aspects are easy to use to represent ordinary

relations of separating concerns in three-

dimensional component layering. The illustration

of Figure 13 presents the sample of cutting points

that can show significantly different data even at

the same point because of a plane layer. In this

case, the Layer Interface Abstraction is designed to

manipulate between layers of concerned circuits to

ensure that the core recording of a house

bookkeeping is divided relatively. However, a

circuit component enables to prove the

construction of components at a crosscutting point.

A component working as an object is required

weaving at joining points. Therefore, the syntax

overview of explicit joint points should be

declared for transforming the conceptual design of

the multiconcerns circuit into programming.

 For software design descriptions (SDDs)

in this article, we use the IEEE standard 1016-

2009 for Information Technology. The IEEE Std

1016-2009 stipulates that an SDD should be

organized into a few design views. Each view

addresses a specific set of design concerns of the

stakeholders. Thus, we may state for the better

approach of a design view, design entities, such as

component, class, data stores, and process in

advance to capture all critical elements for

supporting design views. Moreover, the summary

of design views has mentioned that the

composition is refined into new viewpoints. We

are genuinely sure that our components of a

concerned circuit can be express physical designs

and logical decompositions of functionality.

Besides, the partitioning of information should be

more increased by design viewpoints. To agree

with this statement, in three-dimensional layering,

a plane of layering has provided the hyperspace

design of the sets of data and functional data. The

house bookkeeping software enables support users

to add their new sub-categories of recordings. For

example, a user may have an extra job (selling

products online), the user can add a new type of

income. The report must include several new

revenues by separating from each category.

Figure 13 Number of components in the application developed between IFD without MCCD and IFD with MCCD

The multiconcerns circuit component

technique has shown that the component-based

model concentrates on a fewer decomposition of

tangling components while preserving exactly

consistent former system operations. The

multiconcerns circuit component technique

0
2
4
6
8

10
12
14
16
18

Components of the House Bookkeeping Mobile Software

IFD without MCCD IFD with MCCD

RJAS Research Article Template

257

provides interoperations of components into

individual functional or aspectual components,

precisely representing essential communications.

However, other concerns of component-based

software quality, such as system performance,

reusability, extensibility, and adaptability, need to

be supplemented to discover how this technique

could accomplish it.

6. Discussion

 In the early stages of approaching the

separation of concerns, the user's requirement is

gathered to analyze and design for non-functional

requirements. Aspect-Oriented Architecture

Design (AOAD) only improved non-functional

requirements (Sanchez, Moreira, Fuentes, Araujo,

& Magno, 2010; Panunzio, & Vardanega, 2014).

In our work, the separation of concerns is used to

design the house bookkeeping software design's

functional requirements. We have applied the

separation of concerns by dividing a fine

granularity into sets of data, functional data, and

aspect elements. The data sets are related to the

three-dimensional layering for providing a method

call through a plane on each dimension or more

named the functional data. The hyperspace design

can represent a crosscutting point between the

functional data and the aspect elements. By

dividing the aspectual properties from the base

components, the separation of concerns can lead us

to the dependencies of the aspect elements claimed

by Sanchez, Moreira, Fuentes, Araujo, and Magno

(2010).

Additionally, if there is a change in a

development period, such as an extension request

of functional components and a new method, call

to a pointcut. The new aspects are called statically

at a compiling time, and a dynamic weaving is

provide supporting on the requirement of

applications during a running time (Diaz, Romero,

Rubio, Soler, & Troya, 2005; Zhang, & Rong,

2009; Rukhiran, & Netinant, 2020a). The new

requirement will not impact the design and

implementation phases. Design views of the

multiconcerns circuit component diagram are

provided separately using crosscutting points to

execute between the functional data and the aspect

elements. Weaving ideas can be programmed

supporting any language (Java, C#, C++, and

Python). Basically, in Java, there are many

programming extensions, including AspectJ (a

widespread aspect-oriented extension to Java) and

weaveJ (a dynamic aspect weaver for Java Virtual

Machine (JVM) which uses a special opcode

(invokedynamic method)) to be added in an

implemented code (Garcia, Ortin, Llewellyn-

Jones, & Merabti, 2013; Rodriguez-Prieto, Ortin,

& O'Shea, 2018). AspectJ is a simple aspect-

oriented extension supporting operating systems

and embedded systems programming. In this

paper, the house bookkeeping mobile application

has been developed by C# .Net language on

Xamarin cross-platform. The multiconcerns circuit

component diagram establishes the separation of

functional components and aspectual components.

The diagram makes developers visualize,

comprehend, realize, and assembled the

components to reduce redundant components, have

few tangling components, refactor unstructured

components, and be better interactions of

components.

By designing the house bookkeeping

software components, the execution flow of the

multiconcerns circuit component diagram can

represent the individual work of each component,

information, relationships, and interactions

between components. While all components are

proposed by describing information, processes,

structures, interactions, and functions, we have

found that the functional cooperation between

components is an important key that should

identify clearly for increasing modularity and ease

of reuse components (Hoffman, & Eugster, 2008).

Many inputs and outputs signals of a circuit

component can represent connections and

interaction to perform different crosscutting

concerns at a running time. Design views are

applied using the concept of viewpoint. The

viewpoints approach allocates a few points with

another corresponding (Panunzio, & Vardanega,

2014). The component-based software is proposed

as a component model involving the improved

separation of concerns and minimal interaction

environments.

7. Conclusion

 In this paper, the multiconcerns circuit

component diagram promises to support a better

aspect-oriented approach through a different glass

of coffee to describe how the aspect-oriented

approach works differently. The three-dimensional

layering is proposed diving from three different

categories of the house bookkeeping software

design. The functional requirements are influenced

to design the aspect elements of the house

bookkeeping generated and categorized in two

types for supporting calling once time and

repeating at the same time. A multilayered

RJAS Research Article Template

258

approach is provided for adapting a variety of

crosscutting concerns by weaving. Weaving is an

operation between functional data and the aspect

elements. For improving software designs, a

developer should focus on designing an

architecture constraint known as components.

Designing components enable collaboration of the

reusable and flexible classes. We have defined

Layer Interface Abstraction as a conjunction

layering between a component-based circuit

component diagram and a low-level perspective of

separating multiconcerns circuit components (an

income layering, an expenditure layering, and a

liability layering). The layer interface abstraction

is more beneficial for independent concerns and

data granularity. Thus, the evaluation presenting

through operational semantics of three-

dimensional layering enables understanding the

executions of weaving and ease to use in an

implementation phase. We have compared the

house bookkeeping software design and

development using between the information flow

diagram without the multiconcerns circuit

component diagram and the information flow

diagram with the multiconcerns circuit component

diagram. The component layering is not

guaranteed to lead to a great deal of complexity

and duplication in designing, developing, and

maintaining software. Software engineers are

responsible for dealing with those issues by using

any techniques. Therefore, component-based

software is enabled to apply by the new

introduction of multiconcerns circuit components.

8. Acknowledgements
 This work was supported by the National

Broadcasting and Telecommunication Commission

(grant number BT2-15/1-61) during 2019 - 2021,

Rangsit University, and Rajamangala University of

Technology Tawan-OK, Thailand. This research

project was funded in the amount of

$100,000USD.

9. References

AI-Hudhud, G. (2015). Aspect oriented design for

team learning management system.

Computers in Human Behavior, 51, 627-631.

DOI: 10.1016/j.chb.2015.01.032

Benedetto, P. D. (2011). A framework for context

aware adaptable software services: A

framework for programming, analyzing,

delivering and deploying context-aware

adaptable applications and services.

Saarbrucken, Germany: LAP LAMBERT

Academic Publishing.

Boukraa, D., Boussaid, O., Bentayeb, F., &

Zegour, D. (2013). A layered

multidimensional model of complex objects.

Proceeding of the 25th International

Conference on Advanced Information

Systems Engineering. 17-21 June, 2013.

Valencia, Spain. pp. 498-513. Valencia,

Spain: Springer-Verlag.

Chomngern, T., & Netinant, P. (2017). A mobile

software model for web-based learning using

information flow diagram. Proceeding of the

ACM International conference on

information technology. December 27-29,

2017. Singapore, Singapore. pp. 243-247.

DOI: 10.1145/3176653.3176680

Diaz, M., Romero, S., Rubio, B., Soler, E., &

Troya, J. M. (2005). An aspect oriented

framework for scientific component

development. Proceedings of the 13th

Euromicro Conference on Parallel,

Distributed and Network-Based Processing.

February 9-12, 2005. Washington, USA. pp.

290-296. DOI: 10.1109/EMPDP.2005.11

Gama, K. & Donsez, D. (2011). Applying

dependability aspects on top of aspectized

software layers. Proceedings of the 10th

international conference on Aspect-oriented

software development. March 21-25, 2011.

Pernambuco, Brazil. pp. 177-190. DOI:

10.1145/1960275.1960297

Garcia, M., Ortin, F., Llewellyn-Jones, D., &

Merabti, M. A. (2013). Performance cost

evaluation of aspect weaving. Proceedings of

the 36th Australasian Computer Science

Conference. January 29-February 1, 2013.

Adelaide, Australia. pp. 79-85. DOI:

10.5555/2525401.2525410

Giedrimas, V., & Omanovic, S. (2015). The

impact of mobile architectures on

component-based software engineering.

Proceeding of the 3rd Workshop on Advances

in Information, Electronic and Electrical

Engineering. November 13-14, 2015. Riga,

Latvia. pp. 1- 6. DOI:

10.1109/AIEEE.2015.7367317

Gupta K. S., Singh, J., & Kumar, M. (2016).

Composing an aspect oriented approach to

synchronization problems. Proceeding of the

3rd International Conference on Computing

for Sustainable Global Development. March

RJAS Research Article Template

259

16-18, 2016. New Delhi, India. pp. 3036-

3041

Hoffman, K., & Eugster, P. (2008). Towards

reusable components with aspects: An

empirical study on modularity and

obliviousness. Proceedings of the 30th

International Conference on Software

Engineering. May 10-18, 2008. Leipzig,

Germany. pp. 91-100. DOI:

10.1145/1368088.1368102

Kebir, S. (2012). JACAC : An aspect oriented

framework for the development of self-

adaptive software systems. Proceeding of the

6th International Conference on Sciences of

Electronics, Technologies of Information and

Telecommunications. March 21-24, 2012.

Sousse, Tunisia. pp. 74-80. DOI:

10.1109/SETIT.2012.6481893

Khanzadi, M., Shahbazi1, M. M., Arashpour, M.,

& Ghosh, S. (2019). The less agents, the

more schedule reliability: Examination of

single-point responsibility model in design

management. International Journal of Civil

Engineering, 17, 1307-1316. DOI:

10.1007/s40999-018-00389-9

Kumar, A., Kumar, A., & Iyyappan, M. (2016).

Applying separation of concern for

developing softwares using aspect oriented

programming concepts. Procedia Computer

Science, 8, 906-914. DOI:

10.1016/j.procs.2016.05.281

Lee, J., & Bae, D. (2004). An aspect-oriented

framework for developing component-based

software with the collaboration-based

architectural style. Information and Software

Technology, 46(2), 81-97. DOI:

10.1016/S0950-5849(03)00111-3

Lindstrom, B., Offutt, J., Sundmark, D., Andler,

F., & Pettersson, P. (2017). Using mutation to

design tests for aspect-oriented models.

Information and Software Technology, 81,

112-130. DOI:10.1016/j.infsof.2016. 04.007

Lobato, C., Garcia, A., Romanovsky, A., &

Lucena, C. (2008). An aspect-oriented

software architecture for code mobility.

Software-Practice & Experience, 38(13),

1365-1392. DOI: 10.5555/1455460.1455462

Muck, T. R., & Frohlich, A. A. (2014). Aspect-

oriented RTL HW design using system C.

Microprocessors and Microsystems, 38, 113-

123. DOI: 10.1016/j.micpro.2013.12.002

Netinant, P., & Elrad, T. (2016). Separation of

concerns in designing mobile software.

Journal of Current Science and Technology,

6(1), 89-96. DOI: 10.14456/rjas.2016.8

Okewu, E., & Daramola, O. (2014). Component-

based software engineering approach to

development of a university e-Administration

System. Proceeding of the 6th International

Conference on Adaptive Science &

Technology. Ota, Nigeria. October 29-31,

2014. pp. 1-8. DOI:

10.1109/ICASTECH.2014.7068152

Panunzio, M., & Vardanega, T. (2014). A

component-based process with separation of

concerns for the development of embedded

real-time software systems. The Journal of

Systems and Software, 96, 105-121. DOI:

10.1016/j.jss.2014.05.076

Pinciroli, F., Justo, J. L. B., & Forradellas, R.

(2020). Systematic mapping study: On the

coverage of aspect-oriented methodologies

for the early phases of the software

development life cycle. Journal of King Saud

University –Computer and Information

Sciences, in press, 1-14. DOI:

10.1016/j.jksuci.2020.10.029

Rodriguez-Prieto, O., Ortin, F. & O’Shea, D.

(2018). Efficient runtime aspect weaving for

Java applications. Journal of Information and

Software Technology, 100, 73-86. DOI:

10.1016/j.infsof.2018.03.012

Rukhiran, M, & Netinant, P. (2020a). A practical

model from multidimensional layering

personal financial information framework to

mobile software interface operations. Journal

of Information and Communication

Technology, 19(3), 321-349.

Rukhiran, M., & Netinant, P. (2020b). IoT

architecture based on information flow

diagram for vermiculture smart farming kit.

TEM Journal, 9(4), 1330-1337. DOI:

10.18421/TEM94-03

Sadeghi, A., Esfahani, N., & Malek, S. (2017).

Ensuring the consistency of adaptation

through inter- and intra-component

dependency analysis. ACM Transactions on

Software Engineering and Methodology,

26(2), 2:1-2:27. DOI: 10.1145/3063385

Sanchez, P., Moreira, A., Fuentes, L., Araujo, J., &

Magno, .J. (2010). Model-driven

development for early aspects. Information

RJAS Research Article Template

260

and Software Technology, 52(3), 249-273.

DOI:10.1016/j.infsof.2009.09.001

Sommerville, I. (2014). Software Engineering (10th

ed.). Boston, Massachusetts: Pearson

Education, Inc.

Tanter, E., Figueroa, I., & Tabaerau, N. (2014).

Execution levels for aspect-oriented

programming: Design, semantics,

implementations and applications. Science of

Computer Programming, 80, 311-342. DOI:

10.1016/j.scico.2013.09.002

Tibermacine, C., Sadou, S., Dony, C., & Fabresse,

L. (2011). Component-based specification of

software architecture constraints.

Proceedings of the 14th international ACM

Sigsoft symposium on Component based

software engineering. June 21-23, 2011. New

York, United States. pp 31-40. DOI:

10.1145/2000229.2000235

Verma, I. (2002). Component-based software

engineering. International Journal of

Computer Science & Communication

Networks, 4(3), 84-88.

Witana, V., Fry, M., & Antoniades, M. (1999). A

software framework for application-level

QoS management. Proceeding of the 7th

International Workshop on Quality of

Service. May 31-June 4, 1999. London,

United Kingdom. pp: 51-61. DOI:

10.1109/IWQOS.1999.766478

Zhang, G., & Rong, M. (2009). A framework for

dynamic evolution based on reflective aspect-

oriented software architecture. Proceedings

of the 4th International Conference on

Computer Sciences and Convergence

Information Technology. November 24- 26,

2009. Seoul, South Korea. pp. 7-10. DOI:

10.1109/ICCIT.2009.102

Zhang, Q., Khedri, R., & Jaskolka, J. (2012). An

aspect-oriented language for product family

specification. Procedia Computer Science,

10, 482-489. DOI:

10.1016/j.procs.2012.06.062

