Eliminating the static errors of state variables by using real-time cascaded flatness-based control for induction motors

Pham Tam Thanh¹*, Xuan-Kien Dang², and Le Anh-Hoang Ho³

¹Vietnam Maritime University, Hai Phong, Vietnam
²Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam
³Van Hien University, District 3, Ho Chi Minh City, Vietnam

*Corresponding author; Email: phamtamthanh@vimaru.edu.vn

Received 10 May 2020; Revised 2 June 2020; Accepted 24 June 2020
Published online 22 July 2020

Abstract

Induction Motor (IM) can be found in many industrial applications such as precision machining and automation processes, especially robotics. In this paper, firstly, we investigate the problem of nonlinear discrete-time flatness-based controller design for IM. Secondly, we propose a new control strategy named cascaded flatness-based control (CFBC) by considering the nonlinear characteristics of IM in order to eliminate the static errors of state variables. Simulation is shown to demonstrate the benefits of the proposed CFBC and the performance evaluation is given by experimental results.

Keywords: flatness-based control, induction motor, nonlinear system, real-time control

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>ω, ω_s, ω_r</th>
<th>ψ_p, ψ_f, ψ_r</th>
<th>ψ_{rd}, ψ_{rq}, ψ_{sd}, ψ_{sq}, ψ'{rd}, ψ'{rq}, ψ'{sd}, ψ'{sq}</th>
<th>\psi_0, \psi_s, \psi_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_s, i_s</td>
<td>Vector of stator voltage, vector of stator current</td>
<td>Mechanical rotor velocity, Stator circuit velocity, Rotor circuit velocity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_s', i_s''</td>
<td>Field synchronous or rotor flux orientated coordinate system dq, stator-fixed coordinate system αβ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{sq}, i_{sz}, i_{sw}</td>
<td>dq components of the stator current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i_{sd}, i_{sq}</td>
<td>αβ components of the stator current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_u, m_d</td>
<td>Load torque, motor torque</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_{sd}, u_{sq}</td>
<td>Vector of stator voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_s'</td>
<td>Field synchronous or rotor flux orientated coordinate system dq, stator-fixed coordinate system αβ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_{sd}, u_{sq}</td>
<td>dq components of the stator voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_{sd}, u_{sq}</td>
<td>αβ components of the stator voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Slip</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ω, ω_s, ω_r: Mechanical rotor velocity, Stator circuit velocity, Rotor circuit velocity
ψ_p, ψ_f, ψ_r: Vector of pole, pole flux, Rotor flux
ψ_{rd}, ψ_{rq}, ψ_{sd}, ψ_{sq}, ψ'_{rd}, ψ'_{rq}, ψ'_{sd}, ψ'_{sq}: dq components of rotor, stator flux
ψ_0, ψ_s, ψ_u: Components of \psi_{0}, \psi_{s}, \psi_{u}

Rotor angle, angle of flux orientated coordinate system, angle phase of vector voltage \u_s
J: Torque of inertia
L_m, L_r, L_s: Mutual, rotor, stator inductance
L_{sd}, L_{sq}: Rotor-side, stator-side leakage inductance
d axis, q axis inductance
R_s, R_r: Rotor, stator resistance
T_{r}, T_{s}: Rotor, stator time constant
T_{s}, T_{p}, T_{d}, T_{q}, T_{u}, T_{q}: Sampling period, Sampling frequency, Number of pole pairs
σ: Total leakage factor
1. Introduction

Induction Motor (IM) can be found in many industrial applications such as marine control systems, precision machining and automation processes, marine systems, especially robotics. Due to the advantages of superior power density, highly effectiveness with high speed and accuracy, the problem of control design for IM is not only in relation to low cost and high reliability but also the efficient use of energy (Beaty & Kirtley, 1998; Wang, Zhong, Yang, & Mu, 2010). However, there remain some interesting questions related to how to design a controller so that the static errors of the system state variables are minimized. Noticeably, the nonlinear characteristics of the IM are taken into account in the process of control.

Over the past few decades, the concept of differentially flat systems was first introduced by Fliess, Lévine, Martin, & Rouchon, 1992. The system is considered to be flat if the set of outputs can be found such that all states and inputs can be determined from these outputs without integration. The main purpose of the flatness-based control (FBC) method is first to design an open-loop nominal control corresponding to the predicted trajectory of the flat output. Then, a feedback control law is applied to stabilize the real trajectory around the predicted trajectory of the flat output. The FBC has been recognized as a promising method to deal with nonlinear systems (see, e.g., Levine, 2009 and references therein). To minimize the copper loss at all operating points of the Permanent Magnet Synchronous Motor (PMSM), a hierarchical FBC scheme was developed in Delaleau & Stankovic, 2004. However, The FBC needs not only high quality of control but also robustness under the effect of nonlinearity of the IM. Therefore, normal FBC method does not seem reliable enough.

Considering the nonlinearity of IM, there have been usually several methods used to transform a nonlinear system into a linear system so that the system can apply the approach of linear control. In Dannehl and Fuchs, 2006, a nonlinear differential flatness-based control was proposed to the induction machine fed by a voltage source converter in which the flatness-based control was used for the inner current loop as well as the outer flux and speed loops. Based on the combination of the natural energy dissipation properties of the permanent magnet stepper motor system with its differential flatness property, a nonlinear feedback controller was proposed in Sira-Ramirez, 2000. Another approach for drive systems with elastically coupled loads was reported by Thomsen and Fuchs, 2010. To be clear, fuzzy logic has got a great development and lots of important results in order to deal with problems of uncertainty and disturbance of nonlinear system in literatures (Dang, Guan, Tran, & Li, 2011; Do & Dang, 2018; Dang, Ho, & Do, 2018; Do & Dang, 2019). By using fuzzy logic technique to eliminate the effect of the time-varying nonlinearities of an induction motor, a fuzzy differential FBC was developed by Fan and Zhang, 2011a and 2011b. In Houari, Renaudineau, Martin, Pierfederici, and Meibody-Tabar, 2012, a new differential FBC was presented for a three-phase inverter with an LC filter. Recently, quasi-continuous implementation of structural nonlinear controller based on direct-decoupling for PMSM was presented by our previous work (Thanh & Quang, 2013) and provided the FBC for the PMSM which stimulates the stator current trajectory based on the continuous-time state model of the motor. It should be noted that in the aforementioned papers, the problem of nonlinear FBC has not been fully investigated and the minimization problem of the static errors of state variables has not received important attention.

Based on the discussion aforementioned, the motivation of this paper is to eliminate the static errors of state variables by using a proposed cascaded flatness-based control scheme solving the problems here are: 1) to investigate the problem of nonlinear discrete-time flatness-based controller design for IM, 2) to propose new control strategy named cascaded flatness-based control (CFBC) by considering the nonlinear characteristics of IM in order to suppress the state static errors of IM control system, and 3) to simulate and to do experimental real-time IM hardware model to illustrate the effectiveness of the proposed approach.

The rest of this paper is organized as follows. In Section 2, we introduce a nonlinear discrete-time model of IM. The nonlinear CFBC for IM is presented in Section 3. Next section we deal with the experimental system. Finally, we conclude the paper in Section 6.
2. Discrete-time modeling of induction motors

Consider the current model of IM in the continuous-time form as shown below:
\[
\begin{align*}
\dot{x} &= f(x) + Hu \\
y &= g(x)
\end{align*}
\]
where,
- State vector:
 \[x = [x_1 \ x_2 \ x_3]^T = [i_{sd} \ i_{sq} \ u_s]^T\]
- Input vector:
 \[u = [u_1 \ u_2 \ u_3]^T = [u_{sd} \ u_{sq} \ \omega_s]^T\]
- Output vector:
 \[y = [y_1 \ y_2 \ y_3]^T = [x_1 \ x_2 \ x_3]^T\]
- Differential equation:
 \[f(x) = [-dx_1 + c\psi_{rd}' \ -dx_2 - cT\omega\psi_{rd}']0]^T\]
- State vector:
 \[H(x) = [h_1(x) \ h_2(x) \ h_3(x)]^T\]
- Input vector:
 \[u = [u_{sd} \ u_{sq} \ \omega_s]^T\]
- Output vector:
 \[y = [y_1 \ y_2 \ y_3]^T = [x_1 \ x_2 \ x_3]^T\]

and temporary parameters are given by:
\[
\begin{align*}
a &= 1/(\sigma L_s) \quad b = 1/(\sigma T_s) \quad c = (1 - \sigma)/(\sigma T_s) \\
d &= b + c \quad e = cT_s\omega
\end{align*}
\]

Note that the functions \(H(.)\) and \(\dot{H}(.)\) in equation (1) are inherently nonlinear, the ordinary differential equation (1) cannot be presented exactly. Hence, the exact form of the discrete-time differential equation is difficult to obtain. Therefore, to solve the discrete-time current model of IM, Taylor’s series expansion is used as:
\[
x(k+1) = x(k) + \dot{x}(k)|_{x(k)}T + X(T)
\]
where, \(T\) is sampling period and \(X(T)\) is the higher-order terms of the Taylor’s series expansion which can be expressed as follows:
\[
X(T) = \frac{1}{2!}x^{(2)}(kT)T^2 + \cdots + \frac{1}{n!}x^{(n)}(kT)T^n + \frac{1}{(n+1)!}x^{(n+1)}(kT)T^{n+1}, \xi \in (kT, kT + T)
\]

As the sampling period in the advanced electric drive systems is very small, the higher-order terms in equation (6) can therefore be neglected. By substituting (1) into (5), the discrete-time current model of IM is obtained as:
\[
x(k+1) = x(k) + T\dot{x}(k) + TH(x(k))u(k) + X(T)
\]

Equation (7) can be rewritten in the form of
\[
\begin{bmatrix}
x_1(k+1) \\
x_2(k+1) \\
x_3(k+1)
\end{bmatrix} = \begin{bmatrix}
x_1(k) \\
x_2(k) \\
x_3(k)
\end{bmatrix} + \begin{bmatrix}
-dx_1(k) + c\psi_{rd}' \\
-dx_2(k) - cT_s\omega\psi_{rd}'
\end{bmatrix}T
\]
\[
\begin{bmatrix}
0 \\
0
\end{bmatrix}
\]
\[
\begin{bmatrix}
a \ 0 \ -x_2(k) \\
a \ 0 \ -x_3(k)
\end{bmatrix}
\]
\[
\begin{bmatrix}
u_1(k) \\
u_2(k) \\
u_3(k)
\end{bmatrix} T
\]

We rewritten as below
\[
\begin{bmatrix}
x_1(k+1) \\
x_2(k+1) \\
x_3(k+1)
\end{bmatrix} = \begin{bmatrix}
1-dT & 0 & 0 \\
0 & 1-dT & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1(k) \\
x_2(k) \\
x_3(k)
\end{bmatrix} + \begin{bmatrix}
0 \ a \ 0 \\
0 \ a \ 0 \\
0 \ 0 \ 1
\end{bmatrix}
\begin{bmatrix}
u_1(k) \\
u_2(k) \\
u_3(k)
\end{bmatrix} + \begin{bmatrix}
\xi_1(k) \\
\xi_2(k) \\
\xi_3(k)
\end{bmatrix}
\]

Equation (9) can be written as components
\[
\begin{align*}
i_{sd}(k+1) &= (1-dT)i_{sd}(k) + cT\omega_s \psi_{rd}'(k) + \xi_1(k) \\
i_{sq}(k+1) &= (1-dT)i_{sq}(k) - cT\omega_s \psi_{rd}'(k) + \xi_2(k)
\end{align*}
\]
\[
\begin{align*}
i_{sd}(k+1) &= (1-dT)i_{sd}(k) + cT\omega_s \psi_{rd}'(k) + \xi_1(k) \\
i_{sq}(k+1) &= (1-dT)i_{sq}(k) - cT\omega_s \psi_{rd}'(k) + \xi_2(k)
\end{align*}
\]

It is worthy note that the nonlinear characteristics in the current model of IM (9) or (10) are considered in terms of the products of the state variables (current components \(i_{sd}(k), i_{sq}(k)\) and input variable \(\omega_s(k)\). This nonlinear discrete-time model is used for controller design in the next section.

3. Cascaded flatness-based control for induction model
3.1 Related works

As mentioned in Fliess et al., 1992 and Fliess et al., 1999, the main property of differential flatness is that the state and input variables can be directly expressed, without integrating any differential equation, in terms of the flat output and a finite number of its derivatives. Therefore, the trajectory of input can be determined from desired trajectory of flat output. The general flatness-based control structure consists of a nominal feedforward controller combined with a feedback stabilizing controller as shown in Figure 1. In this structure, the feedback controller is crucial of importance to compensate the effects of external disturbances and model uncertainties.

To model a predictive control based on flatness theory, Fliess and Marquez, 2000 presented the definition of flatness-based predictive control. Moreover, Maaziz, Sigueridjane, Boucher, and Dumur, 1999 used the flatness property to achieve reference trajectory of generalized predictive control for the application, and flatness property optimization used to repeatedly for the input of the system (Mahadevan, Agrawal, & Doyle, 2001; Hagenmeyer, & Delaleau, 2003; Hagenmeyer, & Delaleau, 2004; Hagenmeyer, & Delaleau, 2008). Besides that, there are many applications in recent years such as chemical reactors in Graichen, Hagenmeyer, and Zeitz, 2006, mechatronic control system in Henke, Rue, Neumann, Zeitz, and Sawodny, 2014, and Noda, Zeitz, Sawodny, and Terashima, 2011, hydraulic control in Broocker and Lemmen, 2001, permanent magnet synchronous machines in Faustner, Kemmetmüller, and Kugi, 2015, and Faustner, Kemmetmüller, and Kugi, 2016. However, FBC need not only high quality of control but also robustness under the effect of nonlinearity and uncertainty of models. Therefore, FBC method does not seem reliable enough.

3.2 Proposed cascaded flatness-based control

![Figure 1](image1.png)

Figure 1 The traditional flatness-based control structure

![Figure 2](image2.png)

Figure 2 Cascade control structure of flatness-based control of IM
To eliminate the static errors of state variables system state static errors and to consider the nonlinear characteristics of IM, a cascade flatness-based control structure is proposed in Figure 2. As shown in Figure 2, the cascade control structure includes two loops which are coupled to each other. The loops (speed loop and flux loop) consists of the Proportional-Integral Controller (PI-Controller) and the current Feedforward block while the inner loop (current loop) contains another PI block combined with a voltage Feedforward block. Here, the current controller for the current loop is first designed to guarantee that \(i_{sd} \rightarrow i_{sd}^* \), \(i_{sq} \rightarrow i_{sq}^* \) sufficiently fast with respect to the variations of the desired trajectories \(\omega \rightarrow \omega^* \) which will be achieved by the mechanical subsystem (speed loop). Then, a speed controller is synthesized and it should be noted that these two PI controller blocks are used to compensate the currents and speed static errors.

3.2.1 Speed reference trajectory design

Speed loop is designed based on motion and momentum equations of asynchronous motor as follows

\[
\frac{da}{dt} = \frac{3}{2} z_p (1 - \sigma) L_s \dot{i}_{sd} - m_w \omega \quad (11)
\]

Thus, we switch equation (11) to discrete-time domain obtained equation (12)

\[
\frac{1}{2T_s} [3\omega(k) - 4\omega(k-1) + \omega(k-2)] = \frac{3}{2} z_p (1 - \sigma) L_s i_{sd}(k) - m_w \omega \quad (12)
\]

Based on the principle of flatness components for the speed loop, we calculate the feedforward components

\[
i_{sq - ff}(k) = \frac{1}{2T_s} [3\omega(k) - 4\omega(k-1) + \omega(k-2)] + m_w \omega \quad (13)
\]

To eliminate the deviation, we need to add a feedback regulator:

\[
i_{sq - fb}(k) = i_{sq - fb}(k - 1) + r_{01} [a^*(k) - \omega(k)] + r_0 \omega(k-1) \quad (14)
\]

Then

\[
i_{sq}(k) = i_{sq - ff}(k) + i_{sq - fb}(k) \quad (15)
\]

\[
i_{sq - ff}(k) = \frac{1}{2T_s} [3\omega(k) - 4\omega(k-1) + \omega(k-2)] + m_w \omega \quad (16)
\]

Similarly, we calculate the magnetic flux adjustment loop and then we have equation (17) from the mathematic model of Induction Motor.

\[
3\psi_{rd}^{*}(k) - 4\psi_{rd}(k - 1) + \psi_{rd}(k - 2) + \frac{1}{T_i} \psi_{rd}^{*}(k) = \frac{1}{T_i} i_{sd - ff}(k) \quad (17)
\]

Therefore, we have feedforward components as below

\[
i_{sd - ff}(k) = T_i [3\psi_{rd}^{*}(k) - 4\psi_{rd}(k - 1) + \psi_{rd}(k - 2) + \frac{1}{T_i} \psi_{rd}^{*}(k)] \quad (18)
\]

\[
i_{sd}(k) = T_i [3\psi_{rd}^{*}(k) - 4\psi_{rd}(k - 1) + \psi_{rd}(k - 2) + \frac{1}{T_i} \psi_{rd}^{*}(k)] + i_{sd - fb}(k - 1) + r_{01} [\psi_{rd}(k - 1) - \psi_{rd}(k - 1)] \quad (19)
\]

3.2.2 Flux controller design for current feedforward component

From the proposed current model (10), we have feedforward components as shown in (20)

\[
\begin{align*}
 u_{sd - ff}(k) &= \frac{1}{aT} \left[-(1 - dT) i_{sd}(k) - \omega_0(k) T \dot{i}_{sd}(k) - c T \psi_{rd}^{*}(k) \right] \\
 u_{sq - ff}(k) &= \frac{1}{aT} \left[-(1 - dT) i_{sq}(k) + \omega_0(k) T \dot{i}_{sq}(k) + c T \omega^*(k) T \psi_{rd}^{*}(k) \right]
\end{align*}
\]

Therefore, we have feedback components

\[
\begin{align*}
 u_{sd - fb}(k) &= u_{sd - fb}(k - 1) + r_{01} [i_{sd}(k) - i_{sd}(k)] + r_0 i_{sd}(k - 1) \quad (21)
\end{align*}
\]

Thus, we have the control signals for induction motor as shown in (22)

\[
\begin{align*}
 u_{sd}(k) &= u_{sd - ff}(k) + u_{sd - fb}(k) \\
 u_{sq}(k) &= u_{sq - ff}(k) + u_{sq - fb}(k)
\end{align*}
\]

4. Simulation results

The parameters of Induction Motor using in simulation and experiment are shown in Table 1.
Table 1 IM parameters for simulation and experiment

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal power, P_N</td>
<td>0.18</td>
<td>kW</td>
</tr>
<tr>
<td>Nominal current I_N</td>
<td>1.0</td>
<td>A</td>
</tr>
<tr>
<td>Nominal frequency, f_N</td>
<td>60</td>
<td>Hz</td>
</tr>
<tr>
<td>Number of poles, p_e</td>
<td>2</td>
<td>Pole pairs</td>
</tr>
<tr>
<td>Nominal speed, n_N</td>
<td>1800</td>
<td>rpm</td>
</tr>
<tr>
<td>Nominal voltage, U_N</td>
<td>220</td>
<td>V</td>
</tr>
<tr>
<td>Stator resistance, R_s</td>
<td>11.05</td>
<td>Ω</td>
</tr>
<tr>
<td>Rotor resistance, R_r</td>
<td>6.11</td>
<td>Ω</td>
</tr>
<tr>
<td>Stator inductance, L_s</td>
<td>0.316423</td>
<td>H</td>
</tr>
<tr>
<td>Rotor inductance, L_r</td>
<td>0.316423</td>
<td>H</td>
</tr>
<tr>
<td>Mutual inductance, L_m</td>
<td>0.293939</td>
<td>H</td>
</tr>
</tbody>
</table>

4.1 Case 1: When grow speed from 53.61 rad/s up to 107.22 rad/s and without load in time 1 s

Trajectory the reference speed: At the moment $t = 0.03s$ the motor starts up at 53.61 rad/s, at $t = 0.3$ s the motor accelerates to 107.22 rad/s and stays the same until the time $t = 0.7$ s is reduced to 53.61 rad/s.

Figure 3 Response speed

At the start of startup, the actual speed at which the speed is set at 0.1 s is after the time interval 0.07 s. After a period of 0.08 s, the motor accelerated from 53.61 rad/s to 107.22 rad/s.

Figure 4 Response three-phase currents

Figure 5 The components i_{sd} and i_{sq}

At the time of magnetization, the maximum i_{sd} 0.67 A, when the motor starts up, the i_{sd} current component is constant and equals the rated value of 0.45 A. At startup time, the i_{sq} component is the largest at 2.01 A. When booting successfully, the i_{sq} component is reduced to 0.
4.2 Case 2: When accelerating from 53.61 rad/s to 107.22 rad/s over a 2 seconds period and without load. Trajectory the reference speed: At $t = 0.03$ s, the motor starts up at 53.61 rad/s, at $t = 0.6$ seconds the motor accelerates to 107.22 rad/s and stays the same until the time $t = 1.4$ s is reduced to 53.61 rad/s.

![Figure 6](image1.png) **Figure 6** Response speed

![Figure 7](image2.png) **Figure 7** Response three-phase currents

4.3 Case 3: When reversing from 53.61 rad/s to -53.61 rad/s for 2 seconds and not loading. Trajectory the reference speed: At the moment $t = 0.03$ s the motor starts up at a speed of 53.61 rad/s, at $t = 0.6$ s the motor reverses to a speed of -53.61 rad/s and is kept until the time $t = 1.4$s, it reverses the speed of 53.61 rad/s.

![Figure 8](image3.png) **Figure 8** The components i_{sd} and i_{sq}

![Figure 9](image4.png) **Figure 9** Response speed
4.4. Case 4: When accelerating from 94.25 rad/s to 188.5 rad/s for 1 second and without load

Trajectory the reference speed: At the moment $t = 0.03$ s the motor starts up at a speed of 94.25 rad/s, at $t = 0.3$ seconds the motor accelerates to 188.5 rad/s and stays the same. By the time $t = 0.7$ s, the deceleration was 94.25 rad/s.

4.5 Case 5: When reversing from 94.25 rad/s to -94.25 rad/s for 1 second and not loading

Trajectory the reference speed: At the moment $t = 0.03$ s the motor starts up at a speed of 94.25 rad/s, at $t = 0.3$ s the motor reverses to -94.25 rad/s and is kept until the time $t = 0.7$ s, reversing the speed of 94.25 rad/s.
Figure 15 Response speed

Figure 16 Response three-phase currents

4.6. Case 6: When accelerating from 94.25 rad/s to 188.5 rad/s and closing the load at 0.5 s

Some features gained during the simulation.

Figure 17 The components i_{sd} and i_{sq}

Figure 18 Speed responses of IM

At the start of startup, the actual speed at which the speed is set at 0.16 s is after 0.13 s. After 0.12 s, the motor accelerates from 94.25 rad/s to 188.5 rad/s.
At the time of magnetization, the maximum i_{sd} 0.67 A, when the motor starts up, the i_{sd} current is constant and equal to the rated value of 0.45 A. At startup the i_{sq} component is the largest at 2.01 A. On successful startup, the i_{sq} component is reduced to 0. When the 100% load is closed at 0.5 s the i_{sq} current is equal to the rated current of 1.34 A.

5. Experimental results and discussion

5.1 Experimental system

The experimental structure consists of as follows:
- Experimental motors: The motors are asynchronous crankshaft rotor; the motor speed is measured by the encoder attached to the motor.
- Load for engine.
- Experimental inverters: Experimental inverters include power valves, DSPs TMS320F28335 for control programs, current measurement circuits, DC voltage measurement circuits, coupling circuits to encoder for feeding back degree of motor.
- Measuring devices: oscilloscopes, multimeters, ampere pliers, and computer.
- Three-phase self-transformer.

In this experimental system, the structure of the experimental inverter, as shown in Figures 21 and 22, consists of the following modules: Capacity module, measurement module, control module, and additional functions.

The experimental system consists of: Experimental drives (power circuits and measurement, protection and control), motors, loads, measuring instruments including: multimeter, oscilloscope. Experimental design and construction are structurally and functionally similar to commercial inverters but are very flexible allowing direct interference with software and installing control structures in the C programming language. The digital signal processor used here is DSP TMS320F28335.
5.2 Experimental results

5.2.1 Case 1: When accelerating the motor from 53.61 rad/s to 107.22 rad/s for 1 second

Trajectory the reference speed: At \(t = 0.03 \) s the motor starts at 53.61 rad/s, at \(t = 0.3 \) s the motor accelerates to 107.22 rad/s and stays the same until at \(t = 0.7 \) s, deceleration is 53.61 rad/s. Start-up, acceleration and deceleration are performed in 1 second (Figure 24a).

Figure 24 Speed and dq components stator current of the motor when accelerating the motor

5.2.2 Case 2: When accelerating the motor from 53.61 rad/s to 107.22 rad/s for 2 seconds

Trajectory the reference speed: At the moment \(t = 0.03 \) s the motor starts up at 53.61 rad/s, at \(t = 0.6 \) seconds the motor accelerates to 107.22 rad/s and stays the same until at \(t = 1.4 \) s,
deceleration is 53.61 rad/s. Startup, acceleration and deceleration are performed in 2 seconds.

![Image](image1.png)

Figure 25 Speed and dq components stator current of the motor when accelerating the motor

5.2.3. Case 3: When reversing from 53.61 rad/s to -53.61 rad/s over 2 seconds

Trajectory the reference speed: At the moment \(t = 0.03 \) s, the motor starts up at 53.61 rad/s, at time \(t = 0.4 \) s the motor reverses to -53.61 rad/s and is held until the time \(t = 1.4 \) s, it reverses the speed of 53.61 rad/s. The process of starting, reversing 2 times is done in 2 seconds.

![Image](image2.png)
5.2.4. Case 4: When accelerating the motor from 94.25 rad/s (900 rpm) to 188.5 rad/s (1800 rpm) for 1 second

Speed reference trajectory: At the moment $t = 0.03$ s, the IM starts in 94.25 rad/s speed at $t = 0.3$ s, the speed of motor accelerates to 188.5 rad/s and stays the same speed until $t = 0.7$ s, then the deceleration speed is 94.25 rad/s. Startup, acceleration and deceleration are performed in 1s, this result is considered as a good state of startup process.

Figure 27 Speed and dq components stator current of the motor when accelerating the motor
The i_{sd} and i_{sq} components current increased to 2.1 A at the time of acceleration. We find that the real speed is very close to the set speed.

5.2.5 Case 5: When reversing from 94.25 rad/s (900 rpm) to -94.25 rad/s for 1 second

5.2.6. Case 6: When the motor is operating at a rated speed of 188.5 rad/s (1800 rpm) with load

Figure 28 Speed and dq components stator current of the motor when reversing

Trajectory the reference speed: At the moment $t = 0.03$ s, the motor starts up at 94.25 rad/s, at $t = 0.3$ s the motor reverses to -94.25 rad/s and is held until the time $t = 0.7$ s, the speed back to 94.25 rad/s. Start-up, reversal is performed in 1 second.

Figure 29 Characteristics when imposing load

a) i_{sd}, i_{sq} current components when 50% load

b) i_{sd}, i_{sq} current components when 70% load
When the load is constant, the \(i_{sd}\) current component is constant, the \(i_{sq}\) current component increases with the load. When the load is 70% of the \(i_{sq}\) current around 1 Ampere, it can be seen that the empirical results reflect the desired perceptions correctly. The load changing is the main factor which is caused by nonlinearity of the IM, and experimental results are shown that the proposed CFBC strategy reduced the effect of nonlinear problem in both startup and load changing process of IM.

6. Conclusions
In this paper, we review the nonlinear problem of IM discrete-time control. The motivations are to eliminate the static errors of state variables and to solve the nonlinear characteristics of IM control system by using the proposed SFBC scheme. In which, through Taylor series expansion and differential flatness, three controllers of the current, speed and flux loops are used to eliminate the static errors. Then, 6 cases of simulation are shown to demonstrate the effectiveness of the proposed CFBC. The performance evaluation is given by experimental results. For example, when the load and \(i_{sd}\) current component are constant, the \(i_{sq}\) current component increased with the load. Meanwhile the load is 70% of the \(i_{sq}\) current about 1 Ampere, it can be seen that the empirical results reflect the desired perceptions correctly. Finally, we conclude the proposed CFBC can improve the effectiveness of IM with high speed and accuracy even if the nonlinear characteristics of the IM are taken into account in the process of control.

7. References

TELKOMNIKA Telecommunication, Computing, Electronics and Control, 16(2), 533-543.
DOI: http://dx.doi.org/10.12928/telkonmika.v16i2.7753
DOI:10.23919/acc.2004.1383580

Noda, Y., Zeitz, M., Sawodny, O., & Terashima, K. (2011). Flow rate control based on

